首页 > 编程语言 >支持向量机算法

支持向量机算法

时间:2024-03-27 13:59:09浏览次数:31  
标签:alphas pairs changed iter 算法 支持 fullSet oS 向量

文章目录

谷歌笔记本(可选)

from google.colab import drive
drive.mount("/content/drive")
Mounted at /content/drive

SMO高效优化算法

import random
def loadDataSet(fileName):
  dataMat = []
  labelMat = []
  fr = open(fileName)
  for line in fr.readlines():
    lineArr = line.strip().split('\t')
    dataMat.append([float(lineArr[0]), float(lineArr[1])])
    labelMat.append(float(lineArr[2]))
  return dataMat, labelMat
def selectJrand(i, m):
  j=i
  while(j==i):
    j = int(random.uniform(0, m))
  return j
def clipAlpha(aj, H, L):
  if aj > H:
    aj = H
  if L > aj:
    aj = L
  return aj
dataArr, labelArr = loadDataSet('/content/drive/MyDrive/Colab Notebooks/MachineLearning/《机器学习实战》/支持向量机/支持向量机/testSet.txt')
labelArr
[-1.0,
 -1.0,
 1.0,
 -1.0,
 1.0,
 1.0,
 1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 1.0,
 -1.0,
 1.0,
 1.0,
 -1.0,
 1.0,
 -1.0,
 -1.0,
 -1.0,
 1.0,
 -1.0,
 -1.0,
 1.0,
 1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 1.0,
 1.0,
 1.0,
 1.0,
 -1.0,
 1.0,
 -1.0,
 -1.0,
 1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 1.0,
 1.0,
 1.0,
 1.0,
 1.0,
 -1.0,
 1.0,
 1.0,
 -1.0,
 -1.0,
 1.0,
 1.0,
 -1.0,
 1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 1.0,
 -1.0,
 1.0,
 -1.0,
 -1.0,
 1.0,
 1.0,
 1.0,
 -1.0,
 1.0,
 1.0,
 -1.0,
 -1.0,
 1.0,
 -1.0,
 1.0,
 1.0,
 1.0,
 1.0,
 1.0,
 1.0,
 1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 1.0,
 -1.0,
 1.0,
 1.0,
 1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0,
 -1.0]
from numpy import *
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix)
    alphas = mat(zeros((m,1)))
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                j = selectJrand(i,m)
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H:
                  print("L==H")
                  continue
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0:
                  print("eta>=0")
                  continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001):
                  print("j not moving enough")
                  continue
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
                                                                        #the update is in the oppostie direction
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                if (0 < alphas[i]) and (C > alphas[i]):
                  b = b1
                elif (0 < alphas[j]) and (C > alphas[j]):
                  b = b2
                else:
                  b = (b1 + b2)/2.0
                alphaPairsChanged += 1
                print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
        if (alphaPairsChanged == 0):
          iter += 1
        else: iter = 0
        print("iteration number: %d" % iter)
    return b,alphas

这是一个简化版的SMO(Sequential Minimal Optimization)算法,用于支持向量机的训练。

输入参数:

  • dataMatIn: 输入数据的特征矩阵
  • classLabels: 输入数据的类别标签
  • C: 软间隔参数,在优化目标函数时对误分类样本的惩罚程度
  • toler: 容错率,用于控制支持向量的选择
  • maxIter: 最大迭代次数

输出结果:

  • b: SMO算法中的常数项
  • alphas: 支持向量的拉格朗日乘子

算法主要步骤:

  1. 初始化一些参数,包括数据矩阵的大小、拉格朗日乘子矩阵等。
  2. 在最大迭代次数内进行迭代,直到所有的乘子不再更新或达到最大迭代次数。
  3. 针对每个样本,计算样本的预测值和误差,并检查是否违反了KKT条件(KKT条件是支持向量机优化问题的充要条件之一)。
  4. 如果违反了KKT条件,选择一个样本作为更新的对象,并计算该样本的预测值和误差。
  5. 根据样本的类别标签,计算L和H的值,用于限制拉格朗日乘子的取值范围。
  6. 计算alpha的更新量eta,并检查eta是否大于等于0,如果是,则继续选择新的样本进行更新。
  7. 更新alpha的值,同时限制其在L和H之间的范围。
  8. 检查alpha的更新幅度是否足够大,如果不够大,则继续选择新的样本进行更新。
  9. 更新常数项b的值,根据更新前后的alpha值和对应的样本信息。
  10. 记录更新的乘子数量,并根据乘子数量是否发生变化来判断是否继续迭代。
  11. 返回最终的常数项和乘子矩阵。

注:其中的函数selectJrand()用于随机选择乘子的索引,clipAlpha()用于限制乘子的取值范围。

b, alphas = smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
<ipython-input-10-609e212d7149>:9: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
  fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
<ipython-input-10-609e212d7149>:10: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
  Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
<ipython-input-10-609e212d7149>:13: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
  fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
<ipython-input-10-609e212d7149>:14: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
  Ej = fXj - float(labelMat[j])


iter: 0 i:0, pairs changed 1
L==H
j not moving enough
L==H
L==H
L==H
L==H
L==H
……
j not moving enough
j not moving enough
iteration number: 40
b
matrix([[-3.82396091]])
alphas[alphas>0]
matrix([[0.09439001, 0.26843195, 0.0348491 , 0.32797286]])
shape(alphas[alphas>0])
(1, 4)
for i in range(100):
  if alphas[i] > 0:
    print(dataArr[i], labelArr[i])
[4.658191, 3.507396] -1.0
[3.457096, -0.082216] -1.0
[5.286862, -2.358286] 1.0
[6.080573, 0.418886] 1.0
import matplotlib.pyplot as plt
dataArr, labelArr = loadDataSet('/content/drive/MyDrive/Colab Notebooks/MachineLearning/《机器学习实战》/支持向量机/支持向量机/testSet.txt')
x = array(dataArr)[:, 0]
y = array(dataArr)[:, 1]
fig = plt.figure()
plt.scatter(x, y)
for i in range(100):
  if alphas[i] > 0:
    plt.scatter(dataArr[i][0], dataArr[i][1], color='red', s=20)
plt.show()

1

def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
    m,n = shape(X)
    K = mat(zeros((m,1)))
    if kTup[0]=='lin': K = X * A.T   #linear kernel
    elif kTup[0]=='rbf':
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
    else: raise NameError('Houston We Have a Problem -- \
    That Kernel is not recognized')
    return K

该函数是用于计算核函数或者将数据转换到更高维空间的函数。函数的输入包括数据集X、一个参考数据集A和一个核函数类型kTup。

首先,函数获取输入数据集的行和列数,并创建一个全零矩阵K,维度为m行1列。

然后,根据核函数类型选择不同的计算方法。如果核函数类型为’lin’,则采用线性核函数的计算方式,即将输入数据集X与参考数据集A的转置矩阵相乘。

如果核函数类型为’rbf’,则采用径向基函数(RBF)核函数的计算方式。首先遍历输入数据集X的每一行,计算每一行与参考数据集A的欧氏距离的平方,并存储在K矩阵中。然后,使用指数函数将K矩阵中的每个元素除以核函数参数的平方,并取负数。

最后,如果核函数类型不是’lin’也不是’rbf’,则报错提示核函数类型不被识别。

最后,函数返回计算得到的K矩阵。

class optStruct:
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2))) #first column is valid flag
        self.K = mat(zeros((self.m,self.m)))
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

这段代码是定义了一个名为optStruct的类,该类包含了一些变量和方法。

类的初始化函数__init__接受5个参数:dataMatIn、classLabels、C、toler和kTup。

  • dataMatIn是一个表示数据矩阵的输入
  • classLabels是一个表示类别标签的输入
  • C是一个常数,用于调整目标函数中的惩罚项
  • toler是一个容错率,用于控制在数值计算中的误差
  • kTup是一个元组,表示核函数的类型和参数

初始化函数中,将输入的参数赋值给类的成员变量。

其中,self.alphas是一个m行1列的矩阵,用于存储拉格朗日乘子
self.b是一个常数,用于计算分类器的偏置
self.eCache是一个m行2列的矩阵,用于存储计算过程中的误差缓存
self.K是一个m行m列的矩阵,用于存储样本间的核函数计算结果

然后,使用一个循环来计算核函数矩阵self.K的值。循环从0到self.m-1,每次取出self.X的第i行作为参数,调用kernelTrans函数计算核函数的结果,并将结果赋值给self.K的第i列。

def calcEk(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek
def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
    maxK = -1; maxDeltaE = 0; Ej = 0
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
            if k == i: continue #don't calc for i, waste of time
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:   #in this case (first time around) we don't have any valid eCache values
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej
def updateEk(oS, k):#after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]
def innerL(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H:
          print("L==H")
          return 0
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
        if eta >= 0:
          print("eta>=0")
          return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
          print("j not moving enough")
          return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):
                alphaPairsChanged += innerL(i,oS)
                print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True
        print("iteration number: %d" % iter)
    return oS.b,oS.alphas
import matplotlib.pyplot as plt
dataArr, labelArr = loadDataSet('/content/drive/MyDrive/Colab Notebooks/MachineLearning/《机器学习实战》/支持向量机/支持向量机/testSet.txt')
b, alphas = smoP(dataArr, labelArr, 0.6, 0.001, 40)
x = array(dataArr)[:, 0]
y = array(dataArr)[:, 1]
fig = plt.figure()
plt.scatter(x, y)
for i in range(100):
  if alphas[i] > 0:
    plt.scatter(dataArr[i][0], dataArr[i][1], color='red', s=20)
plt.show()
<ipython-input-48-c1e41c4ea928>:2: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
  fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
<ipython-input-48-c1e41c4ea928>:3: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
  Ek = fXk - float(oS.labelMat[k])


fullSet, iter: 0 i:0, pairs changed 1
fullSet, iter: 0 i:1, pairs changed 1
fullSet, iter: 0 i:2, pairs changed 2
fullSet, iter: 0 i:3, pairs changed 2
fullSet, iter: 0 i:4, pairs changed 3
fullSet, iter: 0 i:5, pairs changed 4
fullSet, iter: 0 i:6, pairs changed 4
fullSet, iter: 0 i:7, pairs changed 4
j not moving enough
fullSet, iter: 0 i:8, pairs changed 4
fullSet, iter: 0 i:9, pairs changed 4
j not moving enough
fullSet, iter: 0 i:10, pairs changed 4
fullSet, iter: 0 i:11, pairs changed 4
fullSet, iter: 0 i:12, pairs changed 4
fullSet, iter: 0 i:13, pairs changed 4
fullSet, iter: 0 i:14, pairs changed 4
fullSet, iter: 0 i:15, pairs changed 4
fullSet, iter: 0 i:16, pairs changed 4
fullSet, iter: 0 i:17, pairs changed 5
fullSet, iter: 0 i:18, pairs changed 6
fullSet, iter: 0 i:19, pairs changed 6
j not moving enough
fullSet, iter: 0 i:20, pairs changed 6
j not moving enough
fullSet, iter: 0 i:21, pairs changed 6
fullSet, iter: 0 i:22, pairs changed 6
fullSet, iter: 0 i:23, pairs changed 7
fullSet, iter: 0 i:24, pairs changed 7
j not moving enough
fullSet, iter: 0 i:25, pairs changed 7
L==H
fullSet, iter: 0 i:26, pairs changed 7
fullSet, iter: 0 i:27, pairs changed 7
fullSet, iter: 0 i:28, pairs changed 7
L==H
fullSet, iter: 0 i:29, pairs changed 7
fullSet, iter: 0 i:30, pairs changed 7
fullSet, iter: 0 i:31, pairs changed 7
fullSet, iter: 0 i:32, pairs changed 7
fullSet, iter: 0 i:33, pairs changed 7
fullSet, iter: 0 i:34, pairs changed 7
fullSet, iter: 0 i:35, pairs changed 7
fullSet, iter: 0 i:36, pairs changed 7
fullSet, iter: 0 i:37, pairs changed 7
fullSet, iter: 0 i:38, pairs changed 7
j not moving enough
fullSet, iter: 0 i:39, pairs changed 7
fullSet, iter: 0 i:40, pairs changed 7
fullSet, iter: 0 i:41, pairs changed 7
fullSet, iter: 0 i:42, pairs changed 7
fullSet, iter: 0 i:43, pairs changed 7
fullSet, iter: 0 i:44, pairs changed 7
fullSet, iter: 0 i:45, pairs changed 7
L==H
fullSet, iter: 0 i:46, pairs changed 7
fullSet, iter: 0 i:47, pairs changed 7
fullSet, iter: 0 i:48, pairs changed 7
fullSet, iter: 0 i:49, pairs changed 7
fullSet, iter: 0 i:50, pairs changed 7
fullSet, iter: 0 i:51, pairs changed 7
L==H
fullSet, iter: 0 i:52, pairs changed 7
fullSet, iter: 0 i:53, pairs changed 7
L==H
fullSet, iter: 0 i:54, pairs changed 7
L==H
fullSet, iter: 0 i:55, pairs changed 7
fullSet, iter: 0 i:56, pairs changed 7
L==H
fullSet, iter: 0 i:57, pairs changed 7
fullSet, iter: 0 i:58, pairs changed 7
fullSet, iter: 0 i:59, pairs changed 7
fullSet, iter: 0 i:60, pairs changed 7
fullSet, iter: 0 i:61, pairs changed 7
L==H
fullSet, iter: 0 i:62, pairs changed 7
fullSet, iter: 0 i:63, pairs changed 7
fullSet, iter: 0 i:64, pairs changed 7
fullSet, iter: 0 i:65, pairs changed 7
fullSet, iter: 0 i:66, pairs changed 7
fullSet, iter: 0 i:67, pairs changed 7
fullSet, iter: 0 i:68, pairs changed 7
L==H
fullSet, iter: 0 i:69, pairs changed 7
fullSet, iter: 0 i:70, pairs changed 7
fullSet, iter: 0 i:71, pairs changed 7
fullSet, iter: 0 i:72, pairs changed 7
fullSet, iter: 0 i:73, pairs changed 7
fullSet, iter: 0 i:74, pairs changed 7
fullSet, iter: 0 i:75, pairs changed 7
fullSet, iter: 0 i:76, pairs changed 7
fullSet, iter: 0 i:77, pairs changed 7
fullSet, iter: 0 i:78, pairs changed 7
L==H
fullSet, iter: 0 i:79, pairs changed 7
fullSet, iter: 0 i:80, pairs changed 7
fullSet, iter: 0 i:81, pairs changed 7
L==H
fullSet, iter: 0 i:82, pairs changed 7
fullSet, iter: 0 i:83, pairs changed 7
fullSet, iter: 0 i:84, pairs changed 7
fullSet, iter: 0 i:85, pairs changed 7
fullSet, iter: 0 i:86, pairs changed 7
fullSet, iter: 0 i:87, pairs changed 7
fullSet, iter: 0 i:88, pairs changed 7
fullSet, iter: 0 i:89, pairs changed 7
fullSet, iter: 0 i:90, pairs changed 7
fullSet, iter: 0 i:91, pairs changed 7
fullSet, iter: 0 i:92, pairs changed 7
fullSet, iter: 0 i:93, pairs changed 7
fullSet, iter: 0 i:94, pairs changed 7
fullSet, iter: 0 i:95, pairs changed 7
fullSet, iter: 0 i:96, pairs changed 7
fullSet, iter: 0 i:97, pairs changed 7
fullSet, iter: 0 i:98, pairs changed 7
fullSet, iter: 0 i:99, pairs changed 7
iteration number: 1
j not moving enough
non-bound, iter: 1 i:0, pairs changed 0
non-bound, iter: 1 i:4, pairs changed 1
non-bound, iter: 1 i:5, pairs changed 2
j not moving enough
non-bound, iter: 1 i:17, pairs changed 2
non-bound, iter: 1 i:18, pairs changed 3
non-bound, iter: 1 i:23, pairs changed 4
iteration number: 2
j not moving enough
non-bound, iter: 2 i:0, pairs changed 0
j not moving enough
non-bound, iter: 2 i:5, pairs changed 0
j not moving enough
non-bound, iter: 2 i:17, pairs changed 0
non-bound, iter: 2 i:23, pairs changed 0
j not moving enough
non-bound, iter: 2 i:52, pairs changed 0
non-bound, iter: 2 i:55, pairs changed 0
iteration number: 3
j not moving enough
fullSet, iter: 3 i:0, pairs changed 0
fullSet, iter: 3 i:1, pairs changed 0
fullSet, iter: 3 i:2, pairs changed 0
fullSet, iter: 3 i:3, pairs changed 0
fullSet, iter: 3 i:4, pairs changed 0
j not moving enough
fullSet, iter: 3 i:5, pairs changed 0
fullSet, iter: 3 i:6, pairs changed 0
fullSet, iter: 3 i:7, pairs changed 0
fullSet, iter: 3 i:8, pairs changed 0
fullSet, iter: 3 i:9, pairs changed 0
fullSet, iter: 3 i:10, pairs changed 0
fullSet, iter: 3 i:11, pairs changed 0
fullSet, iter: 3 i:12, pairs changed 0
fullSet, iter: 3 i:13, pairs changed 0
fullSet, iter: 3 i:14, pairs changed 0
fullSet, iter: 3 i:15, pairs changed 0
fullSet, iter: 3 i:16, pairs changed 0
j not moving enough
fullSet, iter: 3 i:17, pairs changed 0
fullSet, iter: 3 i:18, pairs changed 0
fullSet, iter: 3 i:19, pairs changed 0
fullSet, iter: 3 i:20, pairs changed 0
fullSet, iter: 3 i:21, pairs changed 0
fullSet, iter: 3 i:22, pairs changed 0
fullSet, iter: 3 i:23, pairs changed 0
fullSet, iter: 3 i:24, pairs changed 0
fullSet, iter: 3 i:25, pairs changed 0
fullSet, iter: 3 i:26, pairs changed 0
fullSet, iter: 3 i:27, pairs changed 0
fullSet, iter: 3 i:28, pairs changed 0
j not moving enough
fullSet, iter: 3 i:29, pairs changed 0
fullSet, iter: 3 i:30, pairs changed 0
fullSet, iter: 3 i:31, pairs changed 0
fullSet, iter: 3 i:32, pairs changed 0
fullSet, iter: 3 i:33, pairs changed 0
fullSet, iter: 3 i:34, pairs changed 0
fullSet, iter: 3 i:35, pairs changed 0
fullSet, iter: 3 i:36, pairs changed 0
fullSet, iter: 3 i:37, pairs changed 0
fullSet, iter: 3 i:38, pairs changed 0
fullSet, iter: 3 i:39, pairs changed 0
fullSet, iter: 3 i:40, pairs changed 0
fullSet, iter: 3 i:41, pairs changed 0
fullSet, iter: 3 i:42, pairs changed 0
fullSet, iter: 3 i:43, pairs changed 0
fullSet, iter: 3 i:44, pairs changed 0
fullSet, iter: 3 i:45, pairs changed 0
fullSet, iter: 3 i:46, pairs changed 0
fullSet, iter: 3 i:47, pairs changed 0
fullSet, iter: 3 i:48, pairs changed 0
fullSet, iter: 3 i:49, pairs changed 0
fullSet, iter: 3 i:50, pairs changed 0
fullSet, iter: 3 i:51, pairs changed 0
j not moving enough
fullSet, iter: 3 i:52, pairs changed 0
fullSet, iter: 3 i:53, pairs changed 0
L==H
fullSet, iter: 3 i:54, pairs changed 0
fullSet, iter: 3 i:55, pairs changed 0
fullSet, iter: 3 i:56, pairs changed 0
fullSet, iter: 3 i:57, pairs changed 0
fullSet, iter: 3 i:58, pairs changed 0
fullSet, iter: 3 i:59, pairs changed 0
fullSet, iter: 3 i:60, pairs changed 0
fullSet, iter: 3 i:61, pairs changed 0
fullSet, iter: 3 i:62, pairs changed 0
fullSet, iter: 3 i:63, pairs changed 0
fullSet, iter: 3 i:64, pairs changed 0
fullSet, iter: 3 i:65, pairs changed 0
fullSet, iter: 3 i:66, pairs changed 0
fullSet, iter: 3 i:67, pairs changed 0
fullSet, iter: 3 i:68, pairs changed 0
fullSet, iter: 3 i:69, pairs changed 0
fullSet, iter: 3 i:70, pairs changed 0
fullSet, iter: 3 i:71, pairs changed 0
fullSet, iter: 3 i:72, pairs changed 0
fullSet, iter: 3 i:73, pairs changed 0
fullSet, iter: 3 i:74, pairs changed 0
fullSet, iter: 3 i:75, pairs changed 0
fullSet, iter: 3 i:76, pairs changed 0
fullSet, iter: 3 i:77, pairs changed 0
fullSet, iter: 3 i:78, pairs changed 0
fullSet, iter: 3 i:79, pairs changed 0
fullSet, iter: 3 i:80, pairs changed 0
fullSet, iter: 3 i:81, pairs changed 0
fullSet, iter: 3 i:82, pairs changed 0
fullSet, iter: 3 i:83, pairs changed 0
fullSet, iter: 3 i:84, pairs changed 0
fullSet, iter: 3 i:85, pairs changed 0
fullSet, iter: 3 i:86, pairs changed 0
fullSet, iter: 3 i:87, pairs changed 0
fullSet, iter: 3 i:88, pairs changed 0
fullSet, iter: 3 i:89, pairs changed 0
fullSet, iter: 3 i:90, pairs changed 0
fullSet, iter: 3 i:91, pairs changed 0
fullSet, iter: 3 i:92, pairs changed 0
fullSet, iter: 3 i:93, pairs changed 0
fullSet, iter: 3 i:94, pairs changed 0
fullSet, iter: 3 i:95, pairs changed 0
fullSet, iter: 3 i:96, pairs changed 0
fullSet, iter: 3 i:97, pairs changed 0
fullSet, iter: 3 i:98, pairs changed 0
fullSet, iter: 3 i:99, pairs changed 0
iteration number: 4

2

def calcWs(alphas,dataArr,classLabels):
    X = mat(dataArr); labelMat = mat(classLabels).transpose()
    m,n = shape(X)
    w = zeros((n,1))
    for i in range(m):
        w += multiply(alphas[i]*labelMat[i],X[i,:].T)
    return w
def testRbf(k1=1.3):
    dataArr,labelArr = loadDataSet('testSetRBF.txt')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] #get matrix of only support vectors
    labelSV = labelMat[svInd];
    print("there are %d Support Vectors" % shape(sVs)[0])
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print("the training error rate is: %f" % (float(errorCount)/m))
    dataArr,labelArr = loadDataSet('testSetRBF2.txt')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print("the test error rate is: %f" % (float(errorCount)/m))
def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect
def loadImages(dirName):
    from os import listdir
    hwLabels = []
    trainingFileList = listdir(dirName)           #load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels
def testDigits(kTup=('rbf', 10)):
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd]
    labelSV = labelMat[svInd];
    print("there are %d Support Vectors" % shape(sVs)[0])
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print("the training error rate is: %f" % (float(errorCount)/m))
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print("the test error rate is: %f" % (float(errorCount)/m))

class optStructK:
    def __init__(self,dataMatIn, classLabels, C, toler):  # Initialize the structure with the parameters
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2))) #first column is valid flag

def calcEkK(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJK(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
    maxK = -1; maxDeltaE = 0; Ej = 0
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
            if k == i: continue #don't calc for i, waste of time
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:   #in this case (first time around) we don't have any valid eCache values
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej

def updateEkK(oS, k):#after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]

def innerLK(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H:
          print("L==H")
          return 0
        eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T
        if eta >= 0:
          print("eta>=0")
          return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
          print("j not moving enough")
          return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0

def smoPK(dataMatIn, classLabels, C, toler, maxIter):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):
                alphaPairsChanged += innerL(i,oS)
                print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True
        print("iteration number: %d" % iter)
    return oS.b,oS.alphas

标签:alphas,pairs,changed,iter,算法,支持,fullSet,oS,向量
From: https://blog.csdn.net/m0_68111267/article/details/137075242

相关文章

  • 极高创新性!基于斑马算法优化并行卷积神经网络注意力机制结合支持向量机ZOA-PCNN-AT-SV
     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。......
  • 【深度学习】最强算法模型之:潜在狄利克雷分配(LDA)
    潜在狄利克雷分配1、引言2、潜在狄利克雷分配2.1定义2.2原理2.3算法公式2.4代码示例3、总结1、引言小屌丝:鱼哥,给我讲一讲LDA小鱼:LDA?你指的是?小屌丝:就是算法模型的LDA啊,你想啥?小鱼:哦,哦,那就好,小屌丝:你告诉我,你想啥了?小鱼:不滴,我就不小屌丝:…你就说吧,我......
  • 数据结构-排序算法(Java实现)
    1.插入排序1.1基本思想把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列。1.2图解 1.3原理解析第一趟:一组数据可以分为有序序列和无序序列, i表示无序序列的第一个元素,j表示有序序列的......
  • 前缀和算法讲解(二)
    首先,大家看一下一维的前缀和:https://blog.csdn.net/hjyowl/article/details/136580832?spm=1001.2014.3001.5502今天,我们讲解一下二维的前缀和.先看题:输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下......
  • sensitive-word-admin v1.3.0 发布 如何支持敏感词控台分布式部署?
    拓展阅读sensitive-word-adminv1.3.0发布如何支持分布式部署?sensitive-word-admin敏感词控台v1.2.0版本开源sensitive-word基于DFA算法实现的高性能敏感词工具介绍更多技术交流业务背景如果我们的敏感词部署之后,不会变化,那么其实不用考虑这个问题。......
  • 2024年人工智能、算法与自动化工程国际学术会议(ICAIAAE 2024)
    【会议简介】   2024年人工智能、算法与自动化工程国际学术会议将汇聚来自世界各地的顶尖学者,共同探讨人工智能、算法与自动化工程领域的尖端技术和发展趋势。会议将围绕深度学习、机器学习算法和自动化系统设计等多个主题展开,展示最新的研究成果,推动技术创新和产业应......
  • 【蓝桥杯选拔赛真题48】C++九进制回文数 第十四届蓝桥杯青少年创意编程大赛 算法思维
    目录C++九进制回文数一、题目要求1、编程实现2、输入输出二、算法分析三、程序编写四、程序说明五、运行结果六、考点分析七、推荐资料C++九进制回文数第十四届蓝桥杯青少年创意编程大赛C++选拔赛真题一、题目要求1、编程实现提示信息:回文数:反向排列与原......
  • 图像缩放算法最近邻插值法
    最近邻插值是一种简单且常用的图像缩放算法。它基于以下原理:对于目标图像中的每个像素,找到在原始图像中对应的最近的像素点,并将其灰度值赋给目标像素。具体实现步骤如下:计算目标图像与原始图像的尺寸比例关系,即缩放因子。缩放因子可以根据目标图像的宽度和高度与原始图像的......
  • 图像缩放算法双线性插值法
    双线性插值法是一种常用的图像缩放算法,它可以通过对原始图像中的像素进行加权平均来计算目标图像中的像素值。相比最近邻插值,双线性插值可以更准确地估计像素之间的灰度值。具体实现步骤如下:计算目标图像与原始图像的尺寸比例关系,即缩放因子。缩放因子可以根据目标图像的宽......
  • 代码随想录算法训练营第五十八天|● 739. 每日温度 ● 496.下一个更大元素 I
    每日温度 题目链接:739.每日温度-力扣(LeetCode)思路:很容易想到暴力解法。但超时也是很轻松的。classSolution{public:vector<int>dailyTemperatures(vector<int>&temperatures){//stack<int>dd;intdd=1;vector<int>result(tempe......