首页 > 编程语言 >C++初阶:初识模板

C++初阶:初识模板

时间:2024-03-20 18:58:56浏览次数:24  
标签:初阶 函数 实例 int C++ 初识 right 模板 left

        在之前的C与C++编程中,针对实现同样类型功能的函数我们学会使用了函数重载,终于可以不用记忆多个功能相同但是函数名不同的函数了喵。但是在实现的时候仍然显得有点不太方便,有些冗余。世界是懒人的世界,为了方便懒人的使用,模板应运而生~

目录

一、引子

二、函数模板

1.概念

2.格式

3.原理

4.函数模板实例化

(1)隐式实例化

(2)显示实例化

5.匹配规则

三、类模板

1.类模板的定义格式

2.类模板的实例化


一、引子

        实现能够对相同类型进行交换的函数:

void Swap(int &left, int &right)
{
    int temp = left;
    left = right;
    right = temp;
}

void Swap(double &left, double &right)
{
    double temp = left;
    left = right;
    right = temp;
}

void Swap(char &left, char &right)
{
    char temp = left;
    left = right;
    right = temp;
}

        使用函数重载虽然可以实现,但是有一下几个不好的地方:

  • 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数;
  • 代码的可维护性比较低,一个出错可能所有的重载均出错。

        在前面的学习中,我们已经学习了类的有关知识,由我们定义一个类之后,我们可以以这个类为模版来创建对象,那么函数可否这样呢?答案是可以的,这要用到一个关键字template。针对上面的代码,可以用下面的模板函数来替代。

template <typename T>
void Swap(T &left, T &right)
{
    T temp = left;
    left = right;
    right = temp;
}

        泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

二、函数模板

1.概念

        函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

2.格式

template<typename T1,typename T2,……,typename Tn>

返回值类型 函数名(参数列表){}

 例子见上面的swap解决方案。

注意:typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)

3.原理

        函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模版就是将本来应该我们做的重复的事情交给了编译器。

        在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然 后产生一份专门处理double类型的代码,对于字符类型也是如此。

4.函数模板实例化

        用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化 。

(1)隐式实例化

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;
template<class T>
T Add(const T& left, const T& right)
{
    return left + right;
}

int main()
{
    int a1 = 10, a2 = 20;
    double d1 = 10.0, d2 = 20.0;
    Add(a1, a2);//pass
    Add(d1, d2);//pass
    Add(a1, d1);//error
    /*
     该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
     通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,
     编译器无法确定此处到底该将T确定为int 或者 double类型而报错
    注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
    */

    // 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化
    // Add(a, (int)d); 
    return 0;
}

(2)显示实例化

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
using namespace std;
template<class T>
T Add(const T& left, const T& right)
{
    return left + right;
}
int main(void)
{
    int a = 10;
    double b = 20.0;
    // 显式实例化
    Add<int>(a, b);
    return 0;
}

        方法:在函数名后的<>中指定模板参数的实际类型。如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

5.匹配规则

(1)一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数。

// 专门处理int的加法函数
int Add(int left, int right)
{
    return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
    return left + right;
}
void Test()
{
    Add(1, 2);  // 与非模板函数匹配,编译器不需要特化
    Add<int>(1, 2);  // 调用编译器特化的Add版本
}

(2)对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板。(毕竟是懒人创造的东西,人为写好了,编译器也可以选择偷点小懒)

// 专门处理int的加法函数
int Add(int left, int right)
{
    return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
    return left + right;
}
void Test()
{
    Add(1, 2);  // 与非函数模板类型完全匹配,不需要函数模板实例化
    Add(1, 2.0);    // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}

        至于如何区分两个函数,或者说怎么知道调用的是模板给出的函数还是自己写好的函数,可以通过打印函数的地址来直观感受。(1)中的两个函数也可以通过此方法来鉴别。

注意:模板函数不允许自动类型转换,但普通函数可以进行自动类型转换。

三、类模板

1.类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
    // 类内成员定义
};
// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:
	Vector(size_t capacity = 10) :_pData(new T[capacity]), _size(0), _capacity(capacity) {}
	// 使用析构函数演示:在类中声明,在类外定义。
	~Vector();
	void PushBack(const T& data);
	void PopBack();
	// ...
	size_t Size() { return _size; }
	T& operator[](size_t pos)
	{
		assert(pos < _size);
		return _pData[pos];
	}

private:
	T* _pData;
	size_t _size;
	size_t _capacity;
};

// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{
	if (_pData)
	{
		delete[] _pData;
	}
	_size = _capacity = 0;
}

2.类模板的实例化

        类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类

 // Vector类名,Vector<int>才是类型
 Vector<int> s1;
 Vector<double> s2;

        在日后学习数据结构与算法时,模板会被经常使用,届时再会详细讲述。

标签:初阶,函数,实例,int,C++,初识,right,模板,left
From: https://blog.csdn.net/Crazy_Rabbits/article/details/136873001

相关文章

  • 复试C++14真题 看程序写结果5 虚函数、继承 易错?
    复试C++14真题 看程序写结果5  虚函数、继承#include<iostream>usingnamespacestd;classA{public:virtualvoidprint(){cout<<"A::print"<<endl;}//voidprint(){cout<<"A::print"<<endl;}};classB:public......
  • (C++20) jthread中stop_token的基础使用
    (C++20)jthread中stop_token的基础使用文章目录(C++20)jthread中stop_token的基础使用C++20jthread使用方式循环判断条件变量condition_variable_anystop回调std::stop_callbackENDC++20jthreadstd::jthread-cppreference.comstd::stop_token-cpprefere......
  • c++简介
    C++(cplusplus)是一种计算机高级程序设计语言,由C语言扩展升级而产生[17],最早于1979年由本贾尼·斯特劳斯特卢普在AT&T贝尔工作室研发。C++既可以进行C语言的过程化程序设计,又可以进行以抽象数据类型为特点的基于对象的程序设计,还可以进行以继承和多态为特点的面向对象的......
  • C++面向对象整理(1)之初识类和对象
    C++面向对象整理(1)之初识类和对象注:整理一些突然学到的C++知识,随时mark一下例如:忘记的关键字用法,新关键字,新数据结构C++的类和对象C++面向对象整理(1)之初识类和对象一、类的定义1、类成员的访问权限2、类定义示例(1)类内定义(2)类外定义成员函数3、类对象(实例)的定义及......
  • C++ static函数调用问题
    静态成员变量虽然在类中,但它并不是随对象的建立而分配空间的,也不是随对象的撤销而释放(一般的成员在对象建立时会分配空间,在对象撤销时会释放)。静态成员变量是在程序编译时分配空间,而在程序结束时释放空间。静态成员的定义和声明要加个关键static。静态成员可以通过双冒号来使用......
  • C++ 重载运算符返回值问题
    事实上,我们的重载运算符返回void、返回对象本身、返回对象引用都是可以的,并不是说一定要返回一个引用,只不过在不同的情况下需要不同的返回值。那么什么情况下要返回对象的引用呢?原因有两个:允许进行连续赋值;防止返回对象(返回对象也可以进行连续赋值(常规的情况,如a=b=c,而不......
  • 开发之单元测试—Test_C++的gtest单元测试
    单元测试测试的本质其实都是一样的,都是通过给定参数来执行函数,然后判断函数的实际输出结果和期望输出结果是否一致测试框架gtest采用的是xUnit架构,JUnitPyUnit:PyUnit主要用于进行白盒测试和回归测试C++测试gtest单元测试是Google的一套用于编写C++测试的框架,可以运......
  • C++单例基类
    在C++中实现单例模式可以使用模板和C++11的特性来达到目的。下面是一个简单的示例代码:#include<iostream>template<typenameT>classSingleton{public:staticT&getInstance(){staticTinstance;returninstance;}Singleton(const......
  • 线程同步 SynchronizationContext 初识
    什么是SynchronizationContext?SynchronizationContext是.NET中的一个类,用于管理跨线程的同步操作。它提供了一种机制,使线程可以协调对共享资源的访问,从而防止并发问题。SynchronizationContext的工作原理SynchronizationContext与每个线程相关联。当线程执行时,它会使用关......
  • C++单例基类
    要实现一个安全的C++单例基类,确保子类不会随便覆盖单例行为,我们可以使用一种技巧,即CRTP(CuriouslyRecurringTemplatePattern)。这种模式使得基类能够访问派生类的私有和保护成员,从而允许我们在基类中实现单例逻辑,并且保证派生类不会破坏这个逻辑。以下是一个使用CRTP实现的单例......