首页 > 编程语言 >C++ Qt开发:运用QThread多线程组件

C++ Qt开发:运用QThread多线程组件

时间:2024-03-06 11:58:04浏览次数:36  
标签:include run Qt int void C++ 线程 多线程 QThread

Qt 是一个跨平台C++图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍如何运用QThread组件实现多线程功能。

多线程技术在程序开发中尤为常用,Qt框架中提供了QThread库来实现多线程功能。当你需要使用QThread时,需包含QThread模块,以下是QThread类的一些主要成员函数和槽函数。

成员函数/槽函数 描述
QThread(QObject *parent = nullptr) 构造函数,创建一个QThread对象。
~QThread() 析构函数,释放QThread对象。
void start(QThread::Priority priority = InheritPriority) 启动线程。
void run() 默认的线程执行函数,需要在继承QThread的子类中重新实现以定义线程的操作。
void exit(int returnCode = 0) 请求线程退出,线程将在适当的时候退出。
void quit() 请求线程退出,与exit()类似。
void terminate() 立即终止线程的执行。这是一个危险的操作,可能导致资源泄漏和未完成的操作。
void wait() 等待线程完成。主线程将被阻塞,直到该线程退出。
bool isRunning() const 检查线程是否正在运行。
void setPriority(Priority priority) 设置线程的优先级。
Priority priority() const 获取线程的优先级。
QThread::Priority priority() 获取线程的优先级。
void setStackSize(uint stackSize) 设置线程的堆栈大小(以字节为单位)。
uint stackSize() const 获取线程的堆栈大小。
void msleep(unsigned long msecs) 使线程休眠指定的毫秒数。
void sleep(unsigned long secs) 使线程休眠指定的秒数。
static QThread *currentThread() 获取当前正在执行的线程的QThread对象。
void setObjectName(const QString &name) 为线程设置一个对象名。

当我们需要创建线程时,通常第一步则是要继承QThread类,并重写类内的run()方法,在run()方法中,你可以编写需要在新线程中执行的代码。当你创建一个QThread的实例并调用它的start()方法时,会自动调用run()来执行线程逻辑,如下这样一段代码展示了如何运用线程类。

#include <QCoreApplication>
#include <QThread>
#include <QDebug>

class MyThread : public QThread
{
public:
    void run() override
    {
        for (int i = 0; i < 5; ++i)
        {
            qDebug() << "Thread is running" << i;
            sleep(1);
        }
    }
};

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    MyThread thread;
    thread.start();
    thread.wait();

    qDebug() << "Main thread is done.";
    return a.exec();
}

上述代码运行后则会每隔1秒输出一段话,在主函数内通过调用thread.start方法启动这个线程,并通过thread.wait等待线程结束,如下图所示;

1.1 线程组与多线程

线程组是一种组织和管理多个线程的机制,允许将相关联的线程集中在一起,便于集中管理、协调和监控。通过线程组,可以对一组线程进行统一的生命周期管理,包括启动、停止、调度和资源分配等操作。

上述方法并未真正实现多线程功能,我们继续完善MyThread自定义类,在该类内增加两个标志,is_run()用于判断线程是否正在运行,is_finish()则用来判断线程是否已经完成,并在run()中增加打印当前线程对象名称的功能。

class MyThread: public QThread
{
protected:
    volatile bool m_to_stop;

protected:
    void run()
    {
        for(int x=0; !m_to_stop && (x <10); x++)
        {
            msleep(1000);
            std::cout << objectName().toStdString() << std::endl;
        }
    }

public:
    MyThread()
    {
        m_to_stop = false;
    }

    void stop()
    {
        m_to_stop = true;
    }

    void is_run()
    {
        std::cout << "Thread Running = " << isRunning() << std::endl;
    }

    void is_finish()
    {
        std::cout << "Thread Finished = " << isFinished() << std::endl;
    }

};

接着在主函数内调整,增加一个MyThread thread[10]用于存储线程组,线程组是一种用于组织和管理多个线程的概念。在不同的编程框架和操作系统中,线程组可能具有不同的实现和功能,但通常用于提供一种集中管理和协调一组相关线程的机制。

我们通过循环的方式依次对线程组进行赋值,通过调用setObjectName对每一个线程赋予一个不同的名称,当需要使用这些线程时则可以通过循环调用run()方法来实现,而结束调用同样如此,如下是调用的具体实现;

#include <QCoreApplication>
#include <iostream>
#include <QThread>

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    // 定义线程数组
    MyThread thread[10];

    // 设置线程对象名字
    for(int x=0;x<10;x++)
    {
        thread[x].setObjectName(QString("thread => %1").arg(x));
    }

    // 批量调用run执行
    for(int x=0;x<10;x++)
    {
        thread[x].start();
        thread[x].is_run();
        thread[x].isFinished();
    }

    // 批量调用stop关闭
    for(int x=0;x<10;x++)
    {
        thread[x].wait();
        thread[x].stop();

        thread[x].is_run();
        thread[x].is_finish();
    }

    return a.exec();
}

如下图则是运行后实现的多线程效果;

1.2 向线程中传递参数

向线程中传递参数是多线程编程中常见的需求,不同的编程语言和框架提供了多种方式来实现这个目标,在Qt中,由于使用的自定义线程类,所以可通过增加一个set_value()方法来向线程内传递参数,由于线程函数内的变量使用了protected属性,所以也就实现了线程间变量的隔离,当线程被执行结束后则可以通过result()方法获取到线程执行结果,这个线程函数如下所示;

class MyThread: public QThread
{
protected:
    int m_begin;
    int m_end;
    int m_result;

    void run()
    {
        m_result = m_begin + m_end;
    }

public:
    MyThread()
    {
        m_begin = 0;
        m_end = 0;
        m_result = 0;
    }

    // 设置参数给当前线程
    void set_value(int x,int y)
    {
        m_begin = x;
        m_end = y;
    }

    // 获取当前线程名
    void get_object_name()
    {
        std::cout << "this thread name => " << objectName().toStdString() << std::endl;
    }

    // 获取线程返回结果
    int result()
    {
        return m_result;
    }
};

在主函数中,我们通过MyThread thread[3];来定义3个线程组,并通过循环三次分别thread[x].set_value()设置三组不同的参数,当设置完成后则可以调用thread[x].start()方法运行这些线程,线程运行结束后则返回值将会被依次保存在thread[x].result()中,此时直接将其相加即可得到最终线程执行结果;

#include <QCoreApplication>
#include <iostream>
#include <QThread>

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    MyThread thread[3];

    // 分别将不同的参数传入到线程函数内
    for(int x=0; x<3; x++)
    {
        thread[x].set_value(1,2);
        thread[x].setObjectName(QString("thread -> %1").arg(x));
        thread[x].start();
    }

    // 等待所有线程执行结束
    for(int x=0; x<3; x++)
    {
        thread[x].get_object_name();
        thread[x].wait();
    }

    // 获取线程返回值并相加
    int result = thread[0].result() + thread[1].result() + thread[2].result();
    std::cout << "sum => " << result << std::endl;

    return a.exec();
}

程序运行后,则可以输出三个线程相加的和;

1.3 互斥同步线程锁

QMutex 是Qt框架中提供的用于线程同步的类,用于实现互斥访问共享资源。Mutex是“互斥锁(Mutual Exclusion)”的缩写,它能够确保在任意时刻,只有一个线程可以访问被保护的资源,从而避免了多线程环境下的数据竞争和不一致性。

在Qt中,QMutex提供了简单而有效的线程同步机制,其基本用法包括:

  • 锁定(Lock): 线程在访问共享资源之前,首先需要获取QMutex的锁,这通过调用lock()方法来实现。
  • 解锁(Unlock): 当线程使用完共享资源后,需要释放QMutex的锁,以允许其他线程访问,这通过调用unlock()方法来实现。

该锁lock()锁定与unlock()解锁必须配对使用,线程锁保证线程间的互斥,利用线程锁能够保证临界资源的安全性。

  • 线程锁解决的问题: 多个线程同时操作同一个全局变量,为了防止资源的无序覆盖现象,从而需要增加锁,来实现多线程抢占资源时可以有序执行。
  • 临界资源(Critical Resource): 每次只允许一个线程进行访问 (读/写)的资源。
  • 线程间的互斥(竞争): 多个线程在同一时刻都需要访问临界资源。
  • 一般性原则: 每一个临界资源都需要一个线程锁进行保护。

我们以生产者消费者模型为例来演示锁的使用方法,生产者消费者模型是一种并发编程中常见的同步机制,用于解决多线程环境下的协作问题。该模型基于两类角色:生产者(Producer)和消费者(Consumer),它们通过共享的缓冲区进行协作。

主要特点和工作原理如下:

  1. 生产者:
    • 生产者负责产生一些资源或数据,并将其放入共享的缓冲区中。生产者在生产资源后,需要通知消费者,以便它们可以取走资源。
  2. 消费者:
    • 消费者从共享的缓冲区中取走资源,并进行相应的处理。如果缓冲区为空,消费者需要等待,直到有新的资源可用。
  3. 共享缓冲区:
    • 作为生产者和消费者之间的交换介质,共享缓冲区存储被生产者产生的资源。它需要提供对资源的安全访问,以防止竞态条件和数据不一致性。
  4. 同步机制:
    • 生产者和消费者之间需要一些同步机制,以确保在正确的时机进行资源的生产和消费。典型的同步机制包括信号量、互斥锁、条件变量等。

生产者消费者模型的典型应用场景包括异步任务处理、事件驱动系统、数据缓存等。这种模型的实现可以通过多线程编程或使用消息队列等方式来完成。

首先在全局中引入#include <QMutex>库,并在全局定义static QMutex线程锁变量,接着我们分别定义两个自定义线程函数,其中Producer代表生产者,而Customer则是消费者,生产者中负责每次产出一个随机数并将其追加到g_store全局变量内保存,消费者则通过g_store.remove每次取出一个元素。

static QMutex g_mutex;      // 线程锁
static QString g_store;     // 定义全局变量

class Producer : public QThread
{
protected:
    void run()
    {
        int count = 0;

        while(true)
        {
            // 加锁
            g_mutex.lock();

            g_store.append(QString::number((count++) % 10));
            std::cout << "Producer -> "<< g_store.toStdString() << std::endl;

            // 释放锁
            g_mutex.unlock();
            msleep(900);
        }
    }
};

class Customer : public QThread
{
protected:
    void run()
    {
        while( true )
        {
            g_mutex.lock();
            if( g_store != "" )
            {
                g_store.remove(0, 1);
                std::cout << "Curstomer -> "<< g_store.toStdString() << std::endl;
            }

            g_mutex.unlock();
            msleep(1000);
        }
    }
};

在主函数中分别定义两个线程类,并依次运行它们;

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    Producer p;
    Customer c;

    p.setObjectName("producer");
    c.setObjectName("curstomer");

    p.start();
    c.start();

    return a.exec();
}

至此,生产者产生数据,消费者消费数据;如下图所示;

QMutexLocker 是Qt框架中提供的一个辅助类,它是在QMutex基础上简化版的线程锁,QMutexLocker会保护加锁区域,并自动实现互斥量的锁定和解锁操作,可以将其理解为是智能版的QMutex锁,通过 QMutexLocker可以确保在作用域内始终持有锁,从而避免因为忘记释放锁而导致的问题。该锁只需要在上方代码中稍加修改即可。

使用 QMutexLocker 的一般流程如下:

  1. 创建一个 QMutex 对象。
  2. 创建一个 QMutexLocker 对象,传入需要锁定的 QMutex
  3. QMutexLocker 对象的作用域内进行需要互斥访问的操作。
  4. QMutexLocker 对象超出作用域范围时,会自动释放锁。
static QMutex g_mutex;      // 线程锁
static QString g_store;     // 定义全局变量

class Producer : public QThread
{
protected:
    void run()
    {
        int count = 0;

        while(true)
        {
			// 增加智能线程锁
            QMutexLocker Locker(&g_mutex);

            g_store.append(QString::number((count++) % 10));
            std::cout << "Producer -> "<< g_store.toStdString() << std::endl;

            msleep(900);
        }
    }
};

1.4 读写同步线程锁

QReadWriteLock 是Qt框架中提供的用于实现读写锁的类。读写锁允许多个线程同时读取共享数据,但在写入数据时会互斥,确保数据的一致性和完整性。这对于大多数情况下读取频繁而写入较少的共享数据非常有用,可以提高程序的性能。

其提供了两种锁定操作:

  • 读取锁(Read Lock): 允许多个线程同时获取读取锁,用于并行读取共享数据。在没有写入锁的情况下,多个线程可以同时持有读取锁。
  • 写入锁(Write Lock): 写入锁是互斥的,当一个线程获取写入锁时,其他线程无法获取读取锁或写入锁。这确保了在写入数据时,不会有其他线程同时读取或写入。

互斥锁存在一个问题,每次只能有一个线程获得互斥量的权限,如果在程序中有多个线程来同时读取某个变量,那么使用互斥量必须排队,效率上会大打折扣,基于QReadWriteLock读写模式进行代码段锁定,即可解决互斥锁存在的问题。

#include <QCoreApplication>
#include <iostream>
#include <QThread>
#include <QMutex>
#include <QReadWriteLock>

static QReadWriteLock g_mutex;      // 线程锁
static QString g_store;             // 定义全局变量

class Producer : public QThread
{
protected:
    void run()
    {
        int count = 0;

        while(true)
        {
            // 以写入方式锁定资源
            g_mutex.lockForWrite();

            g_store.append(QString::number((count++) % 10));

            // 写入后解锁资源
            g_mutex.unlock();

            msleep(900);
        }
    }
};

class Customer : public QThread
{
protected:
    void run()
    {
        while( true )
        {
            // 以读取方式写入资源
            g_mutex.lockForRead();
            if( g_store != "" )
            {
                std::cout << "Curstomer -> "<< g_store.toStdString() << std::endl;
            }

            // 读取到后解锁资源
            g_mutex.unlock();
            msleep(1000);
        }
    }
};

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    Producer p1,p2;
    Customer c1,c2;

    p1.setObjectName("producer 1");
    p2.setObjectName("producer 2");

    c1.setObjectName("curstomer 1");
    c2.setObjectName("curstomer 2");

    p1.start();
    p2.start();

    c1.start();
    c2.start();

    return a.exec();
}

该锁允许用户以同步读lockForRead()或同步写lockForWrite()两种方式实现保护资源,但只要有一个线程在以写的方式操作资源,其他线程也会等待写入操作结束后才可继续读资源。

1.5 基于信号线程锁

QSemaphore 是Qt框架中提供的用于实现信号量的类。信号量是一种用于在线程之间进行同步和通信的机制,它允许多个线程在某个共享资源上进行协调,控制对该资源的访问。QSemaphore 的主要作用是维护一个计数器,线程可以通过获取和释放信号量来改变计数器的值。

其主要方法包括:

  • QSemaphore(int n = 0):构造函数,创建一个初始计数值为 n 的信号量。
  • void acquire(int n = 1):获取信号量,将计数器减去 n。如果计数器不足,线程将阻塞等待。
  • bool tryAcquire(int n = 1):尝试获取信号量,如果计数器足够,立即获取并返回 true;否则返回 false
  • void release(int n = 1):释放信号量,将计数器加上 n。如果有等待的线程,其中一个将被唤醒。

信号量是特殊的线程锁,信号量允许N个线程同时访问临界资源,通过acquire()获取到指定资源,release()释放指定资源。

#include <QCoreApplication>
#include <iostream>
#include <QThread>
#include <QSemaphore>

const int SIZE = 5;
unsigned char g_buff[SIZE] = {0};

QSemaphore g_sem_free(SIZE); // 5个可生产资源
QSemaphore g_sem_used(0);    // 0个可消费资源

// 生产者生产产品
class Producer : public QThread
{
protected:
    void run()
    {
        while( true )
        {
            int value = qrand() % 256;

            // 若无法获得可生产资源,阻塞在这里
            g_sem_free.acquire();

            for(int i=0; i<SIZE; i++)
            {
                if( !g_buff[i] )
                {
                    g_buff[i] = value;
                    std::cout << objectName().toStdString() << " --> " << value << std::endl;
                    break;
                }
            }

            // 可消费资源数+1
            g_sem_used.release();

            sleep(2);
        }
    }
};

// 消费者消费产品
class Customer : public QThread
{
protected:
    void run()
    {
        while( true )
        {
            // 若无法获得可消费资源,阻塞在这里
            g_sem_used.acquire();

            for(int i=0; i<SIZE; i++)
            {
                if( g_buff[i] )
                {
                    int value = g_buff[i];

                    g_buff[i] = 0;
                    std::cout << objectName().toStdString() << " --> " << value << std::endl;
                    break;
                }
            }

            // 可生产资源数+1
            g_sem_free.release();

            sleep(1);
        }
    }
};

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    Producer p1;
    Customer c1;

    p1.setObjectName("producer");
    c1.setObjectName("curstomer");

    p1.start();
    c1.start();

    return a.exec();
}

标签:include,run,Qt,int,void,C++,线程,多线程,QThread
From: https://www.cnblogs.com/LyShark/p/18056212

相关文章

  • 01_C++基本数据类型_算数类型
    1.算数类型算数类型主要分为两类——整型和浮点型带符号和无符号类型带符号:int、short、long和longlong,通过在这些类型名前添加unsigned可以得到无符号类型。 选择符号的准则:(1)数值不可能为负时,选择无符号类型。(2)使用int执行整数运算。(3)算数表达式不要使用char或bool,存放字......
  • 【C++】判断一颗二叉树是否对称
    四步法:(1)如果两个子树都为空指针,则它们相等或对称(2)如果两个子树只有一个为空指针,则它们不相等或不对称(3)如果两个子树根节点的值不相等,则它们不相等或不对称(4)根据相等或对称要求,进行递归处理。//四步法判断一颗二叉树是否对称//主函数boolisSymmetric(TreeNode*root){......
  • 【C++】二叉树的前序、中序、后序遍历(递归、非递归)
    #include<vector>#include<iostream>#include<string>usingnamespacestd;//二叉树的定义structTreeNode{intval;TreeNode*left;TreeNode*right;TreeNode(inta):val(a),left(NULL),right(NULL){}};//使用递归进行前序遍历voidpreoder(Tr......
  • 【C++】求二叉树的最大深度和最小深度
    //求一颗二叉树的最大深度求高度:后序遍历求深度:前序遍历intmaxDepth(TreeNode*root){returnroot?1+max(maxDepth(root->left),maxDepth(root->right)):0;}//求一颗二叉树的最小深度(实质上是后序遍历)intminDepth(TreeNode*root){if(!root)retur......
  • 【C++】翻转二叉树(递归、非递归)
    //使用递归翻转二叉树TreeNode*reverseTree(TreeNode*root){if(!root)returnroot;swap(root->left,root->right);reverseTree(root->left);reverseTree(root->right);returnroot;}//使用队列翻转二叉树层序遍历TreeNode*invertTree(TreeNode*root)......
  • Qt QMessageBox的简单用法
    效果思路1//创建一个question弹出对话框,添加两个按钮:Yes和No2QMessageBox*box=newQMessageBox(QMessageBox::Question,"提示","确认删除''的信息吗?",QMessageBox::Yes|QMessageBox::No,this);3box->button(QMessageBox::Yes)->se......
  • c++中nlohmann json的基本使用教程
    摘自:https://www.jb51.net/article/261677.htm 一.json.hpp库下载及安装1.1开源地址及引入方法nlohmannjson的开源项目地址,其中有对json使用方法的详细说明:https://github.com/nlohmann/json#serialization–deserialization对于我们项目中要使用nlohmannjson工具,只......
  • Visual Studio部署C++环境下OpenCV库
      本文介绍在VisualStudio2022中配置、编译C++计算机视觉库OpenCV的方法。1OpenCV库配置  首先,我们进行OpenCV库的下载与安装。作为一个开源的库,我们直接在其官方下载网站中进行下载即可;如下图所示,我们首先选择需要下载的操作系统。  随后,即可在弹出的新界面中自动开......
  • 多线程系列(十四) -一文带你搞懂线程池技术
    一、前言虽然Java对线程的创建、中断、等待、通知、销毁、同步等功能提供了很多的支持,但是从操作系统角度来说,频繁的创建线程和销毁线程,其实是需要大量的时间和资源的。例如,当有多个任务同时需要处理的时候,一个任务对应一个线程来执行,以此来提升任务的执行效率,模型图如下:如......
  • 3562-Qt工程编译说明
       ......