首页 > 编程语言 >算法工程师面试常考手撕题

算法工程师面试常考手撕题

时间:2024-03-02 12:44:21浏览次数:40  
标签:__ 撕题 常考 self torch batch 面试 shape np

手撕 numpy写线性回归的随机梯度下降(stochastic gradient descent,SGD)

  在每次更新时用1个样本,可以看到多了随机两个字,随机也就是说我们用样本中的一个例子来近似我所有的样本,来调整θ,因而随机梯度下降是会带来一定的问题,因为计算得到的并不是准确的一个梯度,对于最优化问题,凸问题,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近。

# 数据加载
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

X, Y = fetch_california_housing(return_X_y=True)
X.shape, Y.shape	# (20640, 8), (20640, )

# 数据预处理
ones = np.ones(shape=(X.shape[0], 1))
X = np.hstack([X, ones])
validate_size = 0.2
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=validate_size, shuffle=True)

# batch 函数
def get_batch(batchsize: int, X: np.ndarray, Y: np.ndarray):
    assert 0 == X.shape[0]%batchsize, f'{X.shape[0]}%{batchsize} != 0'
    batchnum = X.shape[0]//batchsize
    X_new = X.reshape((batchnum, batchsize, X.shape[1]))
    Y_new = Y.reshape((batchnum, batchsize, ))

    for i in range(batchnum):
        yield X_new[i, :, :], Y_new[i, :]

# 损失函数
def mse(X: np.ndarray, Y: np.ndarray, W: np.ndarray):
    return 0.5 * np.mean(np.square(X@W-Y))

def diff_mse(X: np.ndarray, Y: np.ndarray, W: np.ndarray):
    return X.T@(X@W-Y) / X.shape[0]

# 模型训练
lr = 0.001          # 学习率
num_epochs = 1000   # 训练周期
batch_size = 64     # |每个batch包含的样本数
validate_every = 4  # 多少个周期进行一次检验
def train(num_epochs: int, batch_size: int, validate_every: int, W0: np.ndarray, X_train: np.ndarray, Y_train: np.ndarray, X_test: np.ndarray, Y_test: np.ndarray):
    loop = tqdm(range(num_epochs))
    loss_train = []
    loss_validate = []
    W = W0
    # 遍历epoch
    for epoch in loop:
        loss_train_epoch = 0
        # 遍历batch
        for x_batch, y_batch in get_batch(64, X_train, Y_train):
            loss_batch = mse(X=x_batch, Y=y_batch, W=W)
            loss_train_epoch += loss_batch*x_batch.shape[0]/X_train.shape[0]
            grad = diff_mse(X=x_batch, Y=y_batch, W=W)
            W = W - lr*grad

        loss_train.append(loss_train_epoch)
        loop.set_description(f'Epoch: {epoch}, loss: {loss_train_epoch}')

        if 0 == epoch%validate_every:
            loss_validate_epoch = mse(X=X_test, Y=Y_test, W=W)
            loss_validate.append(loss_validate_epoch)
            print('============Validate=============')
            print(f'Epoch: {epoch}, train loss: {loss_train_epoch}, val loss: {loss_validate_epoch}')
            print('================================')
    plot_loss(np.array(loss_train), np.array(loss_validate), validate_every)

# 程序运行
W0 = np.random.random(size=(X.shape[1], ))  # 初始权重
train(num_epochs=num_epochs, batch_size=batch_size, validate_every=validate_every, W0=W0, X_train=X_train, Y_train=Y_train, X_test=X_test, Y_test=Y_test)

手撕反向传播(backward propagation,BP)法

  BP算法就是反向传播,要输入的数据经过一个前向传播会得到一个输出,但是由于权重的原因,所以其输出会和你想要的输出有差距,这个时候就需要进行反向传播,利用梯度下降,对所有的权重进行更新,这样的话在进行前向传播就会发现其输出和你想要的输出越来越接近了。

# 生成权重以及偏执项layers_dim代表每层的神经元个数,
#比如[2,3,1]代表一个三成的网络,输入为2层,中间为3层输出为1层
def init_parameters(layers_dim):
    
    L = len(layers_dim)
    parameters ={}
    for i in range(1,L):
        parameters["w"+str(i)] = np.random.random([layers_dim[i],layers_dim[i-1]])
        parameters["b"+str(i)] = np.zeros((layers_dim[i],1))
    return parameters

def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))

# sigmoid的导函数
def sigmoid_prime(z):
        return sigmoid(z) * (1-sigmoid(z))

# 前向传播,需要用到一个输入x以及所有的权重以及偏执项,都在parameters这个字典里面存储
# 最后返回会返回一个caches里面包含的 是各层的a和z,a[layers]就是最终的输出
def forward(x,parameters):
    a = []
    z = []
    caches = {}
    a.append(x)
    z.append(x)
    layers = len(parameters)//2
    # 前面都要用sigmoid
    for i in range(1,layers):
        z_temp =parameters["w"+str(i)].dot(x) + parameters["b"+str(i)]
        z.append(z_temp)
        a.append(sigmoid(z_temp))
    # 最后一层不用sigmoid
    z_temp = parameters["w"+str(layers)].dot(a[layers-1]) + parameters["b"+str(layers)]
    z.append(z_temp)
    a.append(z_temp)
    
    caches["z"] = z
    caches["a"] = a    
    return  caches,a[layers]

# 反向传播,parameters里面存储的是所有的各层的权重以及偏执,caches里面存储各层的a和z
# al是经过反向传播后最后一层的输出,y代表真实值
# 返回的grades代表着误差对所有的w以及b的导数
def backward(parameters,caches,al,y):
    layers = len(parameters)//2
    grades = {}
    m = y.shape[1]
    # 假设最后一层不经历激活函数
    # 就是按照上面的图片中的公式写的
    grades["dz"+str(layers)] = al - y
    grades["dw"+str(layers)] = grades["dz"+str(layers)].dot(caches["a"][layers-1].T) /m
    grades["db"+str(layers)] = np.sum(grades["dz"+str(layers)],axis = 1,keepdims = True) /m
    # 前面全部都是sigmoid激活
    for i in reversed(range(1,layers)):
        grades["dz"+str(i)] = parameters["w"+str(i+1)].T.dot(grades["dz"+str(i+1)]) * sigmoid_prime(caches["z"][i])
        grades["dw"+str(i)] = grades["dz"+str(i)].dot(caches["a"][i-1].T)/m
        grades["db"+str(i)] = np.sum(grades["dz"+str(i)],axis = 1,keepdims = True) /m
    return grades   

# 就是把其所有的权重以及偏执都更新一下
def update_grades(parameters,grades,learning_rate):
    layers = len(parameters)//2
    for i in range(1,layers+1):
        parameters["w"+str(i)] -= learning_rate * grades["dw"+str(i)]
        parameters["b"+str(i)] -= learning_rate * grades["db"+str(i)]
    return parameters
# 计算误差值
def compute_loss(al,y):
    return np.mean(np.square(al-y))

# 加载数据
def load_data():
    """
    加载数据集
    """
    x = np.arange(0.0,1.0,0.01)
    y =20* np.sin(2*np.pi*x)
    # 数据可视化
    plt.scatter(x,y)
    return x,y
#进行测试
x,y = load_data()
x = x.reshape(1,100)
y = y.reshape(1,100)
plt.scatter(x,y)
parameters = init_parameters([1,25,1])
al = 0
for i in range(4000):
    caches,al = forward(x, parameters)
    grades = backward(parameters, caches, al, y)
    parameters = update_grades(parameters, grades, learning_rate= 0.3)
    if i %100 ==0:
        print(compute_loss(al, y))
plt.scatter(x,al)
plt.show()

手撕单头注意力机制(ScaledDotProductAttention)函数

    输入是query和 key-value,注意力机制首先计算query与每个key的关联性(compatibility),每个关联性作为每个value的权重(weight),各个权重与value的乘积相加得到输出。

class ScaledDotProductAttention(nn.Module):
    """ Scaled Dot-Product Attention """

    def __init__(self, scale):
        super().__init__()

        self.scale = scale
        self.softmax = nn.Softmax(dim=2)

    def forward(self, q, k, v, mask=None):
        u = torch.bmm(q, k.transpose(1, 2)) # 1.Matmul
        u = u / self.scale # 2.Scale

        if mask is not None:
            u = u.masked_fill(mask, -np.inf) # 3.Mask

        attn = self.softmax(u) # 4.Softmax
        output = torch.bmm(attn, v) # 5.Output

        return attn, output


if __name__ == "__main__":
    n_q, n_k, n_v = 2, 4, 4
    d_q, d_k, d_v = 128, 128, 64

    q = torch.randn(batch, n_q, d_q)
    k = torch.randn(batch, n_k, d_k)
    v = torch.randn(batch, n_v, d_v)
    mask = torch.zeros(batch, n_q, n_k).bool()

    attention = ScaledDotProductAttention(scale=np.power(d_k, 0.5))
    attn, output = attention(q, k, v, mask=mask)

    print(attn)
    print(output)

手撕多头注意力(MultiHeadAttention)

class MultiHeadAttention(nn.Module):
    """ Multi-Head Attention """

    def __init__(self, n_head, d_k_, d_v_, d_k, d_v, d_o):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.fc_q = nn.Linear(d_k_, n_head * d_k)
        self.fc_k = nn.Linear(d_k_, n_head * d_k)
        self.fc_v = nn.Linear(d_v_, n_head * d_v)

        self.attention = ScaledDotProductAttention(scale=np.power(d_k, 0.5))

        self.fc_o = nn.Linear(n_head * d_v, d_o)

    def forward(self, q, k, v, mask=None):

        n_head, d_q, d_k, d_v = self.n_head, self.d_k, self.d_k, self.d_v

        batch, n_q, d_q_ = q.size()
        batch, n_k, d_k_ = k.size()
        batch, n_v, d_v_ = v.size()

        q = self.fc_q(q) # 1.单头变多头
        k = self.fc_k(k)
        v = self.fc_v(v)
        q = q.view(batch, n_q, n_head, d_q).permute(2, 0, 1, 3).contiguous().view(-1, n_q, d_q)
        k = k.view(batch, n_k, n_head, d_k).permute(2, 0, 1, 3).contiguous().view(-1, n_k, d_k)
        v = v.view(batch, n_v, n_head, d_v).permute(2, 0, 1, 3).contiguous().view(-1, n_v, d_v)

        if mask is not None:
            mask = mask.repeat(n_head, 1, 1)
        attn, output = self.attention(q, k, v, mask=mask) # 2.当成单头注意力求输出

        output = output.view(n_head, batch, n_q, d_v).permute(1, 2, 0, 3).contiguous().view(batch, n_q, -1) # 3.Concat
        output = self.fc_o(output) # 4.仿射变换得到最终输出

        return attn, output


if __name__ == "__main__":
    n_q, n_k, n_v = 2, 4, 4
    d_q_, d_k_, d_v_ = 128, 128, 64

    q = torch.randn(batch, n_q, d_q_)
    k = torch.randn(batch, n_k, d_k_)
    v = torch.randn(batch, n_v, d_v_)    
    mask = torch.zeros(batch, n_q, n_k).bool()

    mha = MultiHeadAttention(n_head=8, d_k_=128, d_v_=64, d_k=256, d_v=128, d_o=128)
    attn, output = mha(q, k, v, mask=mask)

    print(attn.size())
    print(output.size())

手撕自注意力机制函数(SelfAttention)

  Self-Attention。和Attention类似,他们都是一种注意力机制。不同的是Attention是source对target,输入的source和输出的target内容不同。例如英译中,输入英文,输出中文。而Self-Attention是source对source,是source内部元素之间或者target内部元素之间发生的Attention机制,也可以理解为Target=Source这种特殊情况下的注意力机制。

class SelfAttention(nn.Module):
    """ Self-Attention """

    def __init__(self, n_head, d_k, d_v, d_x, d_o):
        self.wq = nn.Parameter(torch.Tensor(d_x, d_k))
        self.wk = nn.Parameter(torch.Tensor(d_x, d_k))
        self.wv = nn.Parameter(torch.Tensor(d_x, d_v))

        self.mha = MultiHeadAttention(n_head=n_head, d_k_=d_k, d_v_=d_v, d_k=d_k, d_v=d_v, d_o=d_o)

        self.init_parameters()

    def init_parameters(self):
        for param in self.parameters():
            stdv = 1. / np.power(param.size(-1), 0.5)
            param.data.uniform_(-stdv, stdv)

    def forward(self, x, mask=None):
        q = torch.matmul(x, self.wq)   
        k = torch.matmul(x, self.wk)
        v = torch.matmul(x, self.wv)

        attn, output = self.mha(q, k, v, mask=mask)

        return attn, output


if __name__ == "__main__":
    n_x = 4
    d_x = 80

    x = torch.randn(batch, n_x, d_x)
    mask = torch.zeros(batch, n_x, n_x).bool()

    selfattn = SelfAttention(n_head=8, d_k=128, d_v=64, d_x=80, d_o=80)
    attn, output = selfattn(x, mask=mask)

    print(attn.size())
    print(output.size())

手撕 beamsearch 算法

 emsp;在NLP翻译或对话任务中,在句子解码阶段,经常用到一种搜索算法beam search。这个算法有时候在大厂面试中,甚至可能会被要求手写实现。这里就从beam search的原理出发,最后手写实现一个beam search。

  • 思路:beam search在贪心搜索上进一步扩大了搜索范围,贪心搜索每下一步只考虑当前最优的top-1结果,beam search考虑最优的top-k个结果。
import torch
import torch.nn.functional as F

def beam_search(LM_prob,beam_size = 3):
    batch,seqlen,vocab_size = LM_prob.shape
    #对LM_prob取对数
    log_LM_prob = LM_prob.log()
    #先选择第0个位置的最大beam_size个token,log_emb_prob与indices的shape为(batch,beam)
    log_beam_prob, indices = log_LM_prob[:,0,:].topk(beam_size,sorted = True)
    indices = indices.unsqueeze(-1)
    #对每个长度进行beam search
    for i in range(1,seqlen):
        #log_beam_prob (batch,beam,vocab_size),每个beam的可能产生的概率
        log_beam_prob = log_beam_prob.unsqueeze(-1) + log_LM_prob[:,i,:].unsqueeze(1).repeat(1,beam_size,1)
        #选择当前步概率最高的token
        log_beam_prob, index = log_beam_prob.view(batch,-1).topk(beam_size,sorted = True)
        #下面的计算:beam_id选出新beam来源于之前的哪个beam;index代表真实的token id
        #beam_id,index (batch,beam)
        beam_id = index//vocab_size
        index = index%vocab_size
        mid = torch.Tensor([])
        #对batch内每个样本循环,选出beam的同时拼接上新生成的token id
        for j,bid,idx in zip(range(batch),beam_id,index):
            x = torch.cat([indices[j][bid],idx.unsqueeze(-1)],-1)
            mid = torch.cat([mid,x.unsqueeze(0)],0)
        indices = mid
    return indices,log_beam_prob

if __name__=='__main__':
    # 建立一个语言模型 LM_prob (batch,seqlen,vocab_size)
    LM_prob = F.softmax(torch.randn([32,20,1000]),dim = -1)
    #最终返回每个候选,以及每个候选的log_prob,shape为(batch,beam_size,seqlen)
    indices,log_prob = beam_search(LM_prob,beam_size = 3)
    print(indices)

手撕 k-means 算法

import numpy as np
def kmeans(data, k, thresh=1, max_iterations=100):
  # 随机初始化k个中心点
  centers = data[np.random.choice(data.shape[0], k, replace=False)]

  for _ in range(max_iterations):
    # 计算每个样本到各个中心点的距离
    distances = np.linalg.norm(data[:, None] - centers, axis=2)

    # 根据距离最近的中心点将样本分配到对应的簇
    labels = np.argmin(distances, axis=1)

    # 更新中心点为每个簇的平均值
    new_centers = np.array([data[labels == i].mean(axis=0) for i in range(k)])

    # 判断中心点是否收敛,多种收敛条件可选
    # 条件1:中心点不再改变
    if np.all(centers == new_centers):
      break
    # 条件2:中心点的阈值小于某个阈值
    # center_change = np.linalg.norm(new_centers - centers)
    # if center_change < thresh:
    #     break
    centers = new_centers

  return labels, centers

# 生成一些随机数据作为示例输入
data = np.random.rand(100, 2)  # 100个样本,每个样本有两个特征

# 手动实现K均值算法
k = 3  # 聚类数为3
labels, centers = kmeans(data, k)

# 打印簇标签和聚类中心点
print("簇标签:", labels)
print("聚类中心点:", centers)

手撕 Layer Normalization 算法

import torch
from torch import nn
 
class LN(nn.Module):
    # 初始化
    def __init__(self, normalized_shape,  # 在哪个维度上做LN
                 eps:float = 1e-5, # 防止分母为0
                 elementwise_affine:bool = True):  # 是否使用可学习的缩放因子和偏移因子
        super(LN, self).__init__()
        # 需要对哪个维度的特征做LN, torch.size查看维度
        self.normalized_shape = normalized_shape  # [c,w*h]
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        # 构造可训练的缩放因子和偏置
        if self.elementwise_affine:  
            self.gain = nn.Parameter(torch.ones(normalized_shape))  # [c,w*h]
            self.bias = nn.Parameter(torch.zeros(normalized_shape))  # [c,w*h]
 
    # 前向传播
    def forward(self, x: torch.Tensor): # [b,c,w*h]
        # 需要做LN的维度和输入特征图对应维度的shape相同
        assert self.normalized_shape == x.shape[-len(self.normalized_shape):]  # [-2:]
        # 需要做LN的维度索引
        dims = [-(i+1) for i in range(len(self.normalized_shape))]  # [b,c,w*h]维度上取[-1,-2]维度,即[c,w*h]
        # 计算特征图对应维度的均值和方差
        mean = x.mean(dim=dims, keepdims=True)  # [b,1,1]
        mean_x2 = (x**2).mean(dim=dims, keepdims=True)  # [b,1,1]
        var = mean_x2 - mean**2  # [b,c,1,1]
        x_norm = (x-mean) / torch.sqrt(var+self.eps)  # [b,c,w*h]
        # 线性变换
        if self.elementwise_affine:
            x_norm = self.gain * x_norm + self.bias  # [b,c,w*h]
        return x_norm
 
# ------------------------------- #
# 验证
# ------------------------------- #
 
if __name__ == '__main__':
 
    x = torch.linspace(0, 23, 24, dtype=torch.float32)  # 构造输入层
    x = x.reshape([2,3,2*2])  # [b,c,w*h]
    # 实例化
    ln = LN(x.shape[1:])
    # 前向传播
    x = ln(x)
    print(x.shape)

手撕 Batch Normalization 算法

class MyBN:
    def __init__(self, momentum=0.01, eps=1e-5, feat_dim=2):
        """
        初始化参数值
        :param momentum: 动量,用于计算每个batch均值和方差的滑动均值
        :param eps: 防止分母为0
        :param feat_dim: 特征维度
        """
        # 均值和方差的滑动均值
        self._running_mean = np.zeros(shape=(feat_dim, ))
        self._running_var = np.ones((shape=(feat_dim, ))
        # 更新self._running_xxx时的动量
        self._momentum = momentum
        # 防止分母计算为0
        self._eps = eps
        # 对应Batch Norm中需要更新的beta和gamma,采用pytorch文档中的初始化值
        self._beta = np.zeros(shape=(feat_dim, ))
        self._gamma = np.ones(shape=(feat_dim, ))

    def batch_norm(self, x):
        """
        BN向传播
        :param x: 数据
        :return: BN输出
        """
        if self.training:
            x_mean = x.mean(axis=0)
            x_var = x.var(axis=0)
            # 对应running_mean的更新公式
            self._running_mean = (1-self._momentum)*x_mean + self._momentum*self._running_mean
            self._running_var = (1-self._momentum)*x_var + self._momentum*self._running_var
            # 对应论文中计算BN的公式
            x_hat = (x-x_mean)/np.sqrt(x_var+self._eps)
        else:
            x_hat = (x-self._running_mean)/np.sqrt(self._running_var+self._eps)
        return self._gamma*x_hat + self._beta

手撕 二维卷积 算法

import numpy as np 
def conv2d(img, in_channels, out_channels ,kernels, bias, stride=1, padding=0):
    N, C, H, W = img.shape 
    kh, kw = kernels.shape
    p = padding
    assert C == in_channels, "kernels' input channels do not match with img"

    if p:
        img = np.pad(img, ((0,0),(0,0),(p,p),(p,p)), 'constant') # padding along with all axis

    out_h = (H + 2*padding - kh) // stride + 1
    out_w = (W + 2*padding - kw) // stride + 1

    outputs = np.zeros([N, out_channels, out_h, out_w])
    # print(img)
    for n in range(N):
        for out in range(out_channels):
            for i in range(in_channels):
                for h in range(out_h):
                    for w in range(out_w):
                        for x in range(kh):
                            for y in range(kw):
                                outputs[n][out][h][w] += img[n][i][h * stride + x][w * stride + y] * kernels[x][y]
                if i == in_channels - 1:
                    outputs[n][out][:][:] += bias[n][out]
    return outputs

-------------THE END-------------

休息一下~

文章来源于微信公众号:AIGC小白入门记
链接:https://mp.weixin.qq.com/s/2blXYBuKlKrdLOu6VzcqvQ
本文仅用于学术分享,如有侵权,请联系后台作删文处理

标签:__,撕题,常考,self,torch,batch,面试,shape,np
From: https://www.cnblogs.com/chuqianyu/p/18048501

相关文章

  • 面试复盘(一)
    1、List、Set、Map是否都继承Collection接口,他们的存取各有什么特点?List按顺序存储,允许随机访存元素可以重复Set不保证元素的顺序,也就是无法通过索引访问元素值唯一,通常用于值唯一的场景Map存储键值对,每个键都是唯一的但是允许值重复不保证元素顺序,也就是无法通过索......
  • JS面试题
    1.判断一个函数是否标记为asyncfunctionisAsyncFunction(func){conststr=Object.prototype.toString.call(func);returnstr=='[objectAsyncFunction]';}2.两个大整数之和/***1.将两个数字对齐*2.从后往前循环,按位相加同时加上进位*3.计算进位*4.到最......
  • 面试必备:一线大厂Redis缓存设计规范与性能优化
    说在前面你是否在使用Redis时,不清楚Redis应该遵循的设计规范而苦恼?你是否在Redis出现性能问题时,不知道该如何优化而发愁?你是否被面试官拷问过Redis的设计规范和性能优化而回答不出来别慌,看这篇文章就行了本文,已收录于,我的技术网站aijiangsir.com,有大厂完整面经,工作技术,架构......
  • 面试官上来就让手撕HashMap的7种遍历方式,当场愣住,最后只写出了3种
    写在开头今天有个小伙伴私信诉苦,说面试官上来就让他手撕HashMap的7种遍历方式,最终只写出3种常用的,怀疑面试官是在故意***难。这个问题大家怎么看?反正我个人感觉这肯定不是***难,“手撕遍历方式”算是一个比较简单的考验方式了,而且集合的遍历又是日常开发的必备!至于要一下写出7......
  • 面试必备!《1000多道互联网Java工程师面试题》分享
    资料领取见文末!在当今互联网时代,Java作为一种广泛应用的编程语言,在互联网行业中扮演着至关重要的角色。无论是初学者还是有经验的开发者,不断学习和提升自己的Java技能都是至关重要的。而《1000多道互联网Java工程师面试题》这份资料提供了一个绝佳的机会,让你深入了解并加强对Java......
  • 数据类型拓展与面试题解读
    整数拓展进制:在平时咱们生活中经常见到的例如通用于电脑识别的二进制、咱们生活中常用的十进制、工作中常见的八进制与十六进制。二进制:通常会以0b开头十进制:咱们生活中的数字八进制:通常以0开头十六进制:通常以0x开头​ 浮点数拓展(float、double)试题举例银行......
  • 面试题 02.07. 链表相交C
    利用链表的特性,如果相交的话,后面就不可能岔开!你可以想象把他们有同一个尾巴,然后从尾巴往前看。所以只要知道两个链表的长度,就可以在同一起跑线上一起比较了。/***Definitionforsingly-linkedlist.*structListNode{*intval;*structListNode*next;......
  • 前端面试题(四)—— 事件委托(Event Delegation)
    一、什么是事件委托事件委托(EventDelegation)是一种常用的技术。它利用事件冒泡的特性,在父元素上监听事件,而不是在子元素上直接添加事件监听器。通过在父元素上捕获事件,然后根据事件的目标(target)来执行相应的操作,从而实现对子元素的事件处理。二、实现方式通过给父元素添加事......
  • Java面试题笔记-多线程篇
    创建线程的几种方式继承Thread类,重写run方法实现Runnable接口,实现run方法实现Callable,实现call方法,配合FutureTask获取线程返回结果通过ThreadPoolExecuter线程池获取线程资源这几种方法的底层都是Runnable,Thread是Runnable接口的实现类,Callable配合FutureTask使用......
  • 面试官:如何设计一个高并发系统?
    面试题如何设计一个高并发系统?面试官心理剖析面试官对高并发系统的深入询问,实际上是对求职者专业技能和经验的精准检验。在许多公司发布的职位描述(JD)中,高并发经验被视作一项重要的加分项,这反映了当前互联网行业对高并发处理能力的极高要求。对于那些真正在互联网公司中负责过......