首页 > 编程语言 >OpenCV计数应用 c++(QT)

OpenCV计数应用 c++(QT)

时间:2024-02-28 16:22:59浏览次数:31  
标签:count std QT auto c++ OpenCV idxs cv size

一、前言

为了挑战一下OpenCV的学习成果,最经一直在找各类项目进行实践。机缘巧合之下,得到了以下的需求:

要求从以下图片中找出所有的近似矩形的点并计数,重叠点需要拆分单独计数。

二、解题思路

1.图片作二值化处理

auto image = cv::imread("points.jpg");
cv::Mat border;
// 为了将图片边缘的点加入计算,将图片整体扩大十个单位
cv::copyMakeBorder(image, border, 10, 10, 10, 10, cv::BORDER_CONSTANT, cv::Scalar(255, 255, 255));

// 灰度化
cv::Mat gray;
cv::cvtColor(border, gray, cv::COLOR_BGR2GRAY);
//二值化
cv::Mat binary;
cv::threshold(gray, binary, 10, 255, cv::THRESH_BINARY);

得到以下结果:

2.腐蚀

可以看到二值化后多数点的形状残缺。会对轮廓查找造成影响,主要就是锯齿和空洞。为了解决这个问题,可以采用腐蚀方法,得到边缘较为光滑的点。

cv::Mat erosion;
cv::Mat kernel = cv::Mat(3, 3, CV_8UC1, cv::Scalar(1));
cv::erode(binary, erosion, kernel, cv::Point(-1, -1), 1) ; // 腐蚀

3.提取所有点的轮廓并计数

std::vector<cv::Mat>contours;
cv::findContours(erosion, contours, cv::RETR_TREE,cv::CHAIN_APPROX_SIMPLE) ;// 轮廓提取

用黄色笔迹绘制出所有的轮廓,如下图所示:

至此,基本能够得到点的数量了,前提是没有重叠点,直接获取contours的数量即可。当然重叠点的问题肯定要解决。接下来采用面积判断法解决该问题。

重叠部分探索

从图中我们可以看出,大部分独立点的面积是近似的,重叠点处的点数基本可以近似于重叠处的面积除以标准独立点的面积。此外,采用面积法也可以过滤一些面积较小的噪点。

1.标准独立点面积的获取

如何找到那个较为标准的点的面积呢?可以使用众数作为标准值。但由于点面积的离散性,不一定能够找到一个完美的众数。所以这里写了一个分组找中位数的方法来找这个标准值。

首先,计算出各个轮廓的面积,并过滤噪点,此处小于30的将视为噪点:

std::vector<double> listArea;
std::vector<cv::Mat> listContour;
std::vector<double> listLength;
auto count = contours.size();
for(int i = 1; i < count; i++)
{
    auto contour = contours[i];
    auto area = cv::contourArea(contour);
    if (area < 30)
        continue;
    listArea.push_back(area);
    listContour.push_back(contour);
    auto arcLen = cv::arcLength(contour, true);
    listLength.push_back(arcLen);
}

其次,将所有面积分组,分组个数等于总个数的平方根:

int groupByStep(const nc::NdArray<double> &nclt, QMap<double, QList<double>> &map)
{
    auto minV = nc::min(nclt)[0];
    auto maxV = nc::max(nclt)[0];
    auto range = maxV - minV;//极差
    auto count = nclt.size();
    auto group = sqrt(count);//分组数量
    int step =  range / group;//分组步长

    for(size_t i = 0; i < count;  i++)
    {
        auto v = nclt[i];
        auto key = (int)((v - minV) / step);
        map[key].push_back(v);
    }
    return group;
}

接着,找到数量最大的组的索引:

int findMaxCountIdx(QMap<double, QList<double>> &map)
{
    int maxIdx = 0;
    auto maxCount = 0;
    auto ks = map.keys();
    auto count = ks.size();
    for(int i = 0; i < count;  i++)
    {
        auto k = ks[i];
        auto vs = map.value(k);
        if(maxCount < vs.size())
        {
            maxCount = vs.size();
            maxIdx = i;
        }
        qDebug() << __FUNCTION__ << k << vs.size();
    }
    return maxIdx;
}

再者,以上一步的索引为起始点,逐步探求前后的索引组,直至索引组中点数大于总点数的一半:

/**
 * @brief accumulate 累加获取选中分组中点的总个数
 * @param idxs
 * @param vss
 * @return
 */
int accumulate(QList<int> &idxs,  QList < QList<double >> &vss)
{
    auto c = 0;
    foreach (auto idx, idxs)
    {
        c += vss[idx].size();
    }
    return c;
}
/**
 * @brief findMoreThanHalfIdxs 获取分组点数量和大于总点一半时的索引
 * @param idxs
 * @param count
 * @param vss
 */
void findMoreThanHalfIdxs(QList<int> &idxs, int count, QList < QList<double >> &vss)
{
    QList<int> idxsTmp = idxs;
    auto l = idxs.first() - 1;
    auto r = idxs.last() + 1;
    auto count_2 = count / 2;
    auto lb = false;
    auto rb = false;

    if(l > -1)
    {
        idxsTmp.insert(0, l);
        auto cnt = accumulate(idxsTmp, vss);
        if(cnt > count_2)
        {
            lb = true;
        }
    }
    if(r < count)
    {
        idxsTmp << r;
        auto cnt = accumulate(idxsTmp, vss);
        if(cnt > count_2)
        {
            rb = true;
        }
    }
    if(lb && rb)
    {
        auto lc = vss[l].size();
        auto rc = vss[r].size();
        if(lc > rc)
        {
            idxs.insert(0, l);
        }
        else
        {
            idxs << r;
        }
    }
    else if (lb)
    {
        idxs.insert(0, l);
    }
    else if (rb)
    {
        idxs << r;
    }
    else
    {
        idxs.insert(0, l);
        idxs << r;
        findMoreThanHalfIdxs(idxs, count, vss);
    }
}

最后,从索引组中找到中位数,即是我们要找的标准值:

/**
 * @brief majority 舍弃极值后再求中位数
 * @param lt
 * @return
 */
double majority(std::vector<double> &lt)
{
    if(!lt.size())return 0;
    auto count = lt.size();
    std::vector<double> sortLt = lt;
    std::sort(sortLt.begin(), sortLt.end(), std::less<double>());//排序
    auto nclt = nc::NdArray<double>(sortLt);
    QMap<double, QList<double>>map;//分组容器
    groupByStep(lt, map);
    auto idx = findMaxCountIdx(map);//个数最多的组的索引
    auto vss = map.values();
    QList<int> idxs{idx};
    findMoreThanHalfIdxs(idxs, count, vss);//以idx为起点,搜寻数量过半的索引
    QList<double> idxVs;//数量过半的值
    foreach (auto idx, idxs)
    {
        idxVs << vss[idx];
    }
    std::sort(idxVs.begin(), idxVs.end(), std::less<double>());//排序
    std::vector<double> idxVsStd;
    toStd(idxVs, idxVsStd);
    nclt = nc::NdArray<double>(idxVsStd);
    auto ret = nc::median(nclt)[0];//中位数
    return ret;
}

2.重叠处点个数的获取

在上一步,我们获取了标准面积auto stdArea = majority(listArea);。接下来只用作简单的除法运算就可以得到点的个数:

 auto countAlone = 0;
auto countLinked = 0;
count = listArea.size();
for(size_t i = 1; i < count; i++)
{
    auto area = listArea[i];
    auto contour = listContour[i];
    auto c = getRectCount(area, stdArea, contour);
    auto m = cv::moments(contour);
    auto cX = int(m.m10 / m.m00);
    auto cY = int(m.m01 / m.m00);
    cv::putText(border, QString::number(c).toStdString(), cv::Point(cX, cY),
                cv::FONT_HERSHEY_COMPLEX, 0.5, cv::Scalar(0, 100, 255), 1);
    auto rect = cv::minAreaRect(contour);
    if (c == 1)
        countAlone += c;
    else
        countLinked += c;
    cv::drawContours(border, listContour, i, cv::Scalar(0, 255, 255), 1);
    // 获取最小外接矩形的4个顶点坐标(ps: cv2.boxPoints(rect) for OpenCV 3.x)
    cv::Mat box;
    cv::boxPoints(rect, box);
    cv::Mat boxInt;
    box.convertTo(boxInt, CV_32S);
    cv::drawContours(border, std::vector<cv::Mat> {boxInt}, 0, cv::Scalar(255, 0, 0), 1);
}
cv::imshow("contoursImg", border);
cv::waitKey();

在以上的步骤中,我们得筛选出独立点,将他们排除在重叠点的个数计算之外。否则,独立点的个数大概率将被计算为:0.6、1.5、1.2...这样的值,会对最终结果产生极大的影响。独立点采用以下方法判断:

bool isOneRectPoint(double &area, cv::Mat &contour)
{
    auto rect = minAreaRect(contour);//最小外接矩形
    auto areaRect = rect.size.height * rect.size.width;//矩形面积
    auto scale = rect.size.height / rect.size.width;//矩形长宽比。假设矩形是正方形,该值接近1
    scale = std::abs(scale - 1);//为了直观判断,此处减1。假设矩形是正方形,那么该值接近0
    auto scaleArea = area / areaRect;//假设矩形是独立矩形,该值接近1
    scaleArea = std::abs(scaleArea - 1);//为了直观判断,此处减1。假设矩形是独立矩形,该值接近0
    return scale < 0.1 && scaleArea < 0.2;//两个判断都接近0,说明该矩形是个独立矩形
}

至于点个数,采用以下方法简单计算即可:

int getRectCount(double &area, double &stdArea, cv::Mat &contour)
{
    auto isRect = isOneRectPoint(area, contour);
    if (isRect)
        return 1;
    auto c = std::max(1.0, round(area / stdArea));
    return c;
}

三、总结

以上是个人对该问题的一些思考与实践。运用到了一些图像处理、几何、统计等相关的知识,此处既作为记录,也更加希望该方法对您有所帮助。困难点在于重叠处点个数的统计,本文采用面积法计算个数,是一种较为简单的方法。当然,如果有更加巧妙的方法,欢迎探讨交流。

标签:count,std,QT,auto,c++,OpenCV,idxs,cv,size
From: https://www.cnblogs.com/hsxian/p/18040892

相关文章

  • C++临时对象
    C++临时对象临时对象的构造与析构在C++中,临时对象(TemporaryObject)是在表达式求值过程中创建的、无名字的对象。它们通常用于存储中间结果或作为函数调用的参数或返回值,其生命周期通常仅限于表达式的求值过程中。临时对象的构建和析构与普通对象类似,只是它们的生命周期通常比......
  • C++ 点的线性拟合 y(x)=ax+b
    一、简单分析点的线性拟合是一般实验数据处理最常用的方法。下面考虑一个用n个数据点拟合成直线的问题,直线模型为y(x)=ax+b这个问题称为线性回归。设变量y随自变量x变化,给定n组观测数据(xi,yi),用直线来拟合这些点,其中a,b是直线的斜率和截距,称为回归系数。为确定......
  • 微软 官方 .net 组件 下载 directx组件 下载 viual c++ 组件 下载 官方 修复DLL方
    下载.NETFramework|免费官方下载(microsoft.com).NETFramework是仅适用于Windows版本的.NET,用于生成客户端和服务器应用程序。升级应用在VisualStudio中单击几下即可将应用从.NETFramework升级到最新的.NET。  DownloadDirectXEnd-UserRuntimefromO......
  • Qt 随机数生成器:QRandomGenerator
    一、描述QRandomGenerator可用于从高质量随机数生成器生成随机值。与C++随机引擎一样,QRandomGenerator可以通过构造函数使用用户提供的值作为种子。播种时,此类生成的数字序列是确定性的。也就是说,给定相同的种子数据,QRandomGenerator会生成相同的数字序列。给定不同的种......
  • Qt 生成随机数 qrand、QRandomGenerator
    //老方法//利用qrand和qsrand生成随机数//位于QtGlobal中//例,生成一个0和10之间的随机数1qsrand(QTime::currentTime().msec());//设置种子,该种子作为qrand生成随机数的起始值,RAND_MAX为32767,即随机数在种子值到32767之间2qrand()%10;//新方法//利用QRandomGenerator类......
  • arm64-ubuntu2204-opencv4.7.0源码编译
    参考:https://blog.csdn.net/weixin_43863869/article/details/128552342https://blog.csdn.net/weixin_39956356/article/details/102643415https://blog.csdn.net/quicmous/article/details/112714641 cdopencv-4.7.0 sudoapt-getinstallbuild-essentiallibgtk2.0-d......
  • opencv读取图像和pillow读取图像的转为torch.tensor的区别
    问题描述:有一个git源码是使用pillow读取图像,然后转为tensor后进行resize操作,但是我现在接收到的图像数据是opencv格式的,最简单的操作是我直接将opencv的格式转为pil格式,然后继续下一步就行。但是这样就多了一个数据转换,所以不想这么干,简介的步骤就是将opencv的numpy格式的数据直......
  • Qt 无法连接到进程内QML调试器
    问题:由于在Qt5以上版本默认开启QML调试器造成的。用于告知用户,这将打开一个到运行QML的Javascript解释器的端口,以便从中获得调试输出。显然,这会造成一个安全漏洞,所以在不安全的地方使用时应该关闭它(在释放运行时自动关闭)。Qt4默认不开启QML调试器,而Qt5版本以上默认开启。......
  • nginx支持cgi(c,c++)
    前段时间用我修改了tinyhttpd,让其cgi支持文件流,感觉满小巧,就应用上了。最近访问请求量上来而来,它对socket的各种异常状态处理不好,对于慢速的链接会占用我的线程。虽然我一直想仿出tencentwebproxy,可惜人懒且没空。用用nginx也不错,配置其支持fcgi,应用代码稍微改改就支持了,效果很不......
  • c++的oop之class和struct
    c++中的面向对象构造函数与C#一样,可以拥有多个构造函数,但python只有一个构造函数默认的无参构造函数,可以这样写classname()=default;构造函数时初始化变量,建议这样写。对于const或自定义类型必须这样写,而对于内置类型几乎是一样的。MyClass::MyClass(stringname,intid):......