首页 > 编程语言 >单链表-Python实现-jupyter->markdown 格式测试

单链表-Python实现-jupyter->markdown 格式测试

时间:2022-10-12 16:07:24浏览次数:56  
标签:__ None markdown jupyter cur Python self head next

单链表引入

  • 顺序表
  • 理解Python变量的本质:变量存储的不是值,是值的地址
  • 理解Python的 "="表示的是指向关系
  • 案例: 交换a,b的值, a=10, b=20
  • a, b = 20, 10
  • t0: a这块内存(也有id), 存储的是10这个值的地址(可能是0x111), b存储的是20这个值(整型4个字节)的地址(可能是0x222)
  • t1: a现在指向b的值的地址(a存储0x222), b指向(存储)10的地址(0x111)
  • Pyhton变量的本质: 指针. 所以Pyhton在定义变量时不必声明变量类型, 因为Pyhton变量根本就不直接存储值, 存储的是值的地址, 通过地址去取值.
  • 真正理解: Pyhton 一切皆对象(存地址嘛, 变量, 容器, 函数, 类...都只是一块地址而已), so 常看到把一个类, 一个函数=给一个变量,就不足为奇了.
a, b = 10, 20 
print('交换前',a,b)
# 交换: 从等号右边开始看, 即把b存储20的地址,现在用a变量存储;
# 将a变量存储10的地址,现在用b去指向, 从而实现了a,b互相交换
# 本质上, 10,20这两个值的地址并未改变, 只是其被引用的变量改变了而已, 改变的是引用
a, b = b, a
print('交换后',a, b)
交换前 10 20
交换后 20 10
# 函数也是一块内存地址而已

def add(x, y):
return x + y

print(add(3,4))
7
f = add  # 将函数赋值给一个变量f, 即用f来指向这块函数的地址
print(f(3,4))
7

构造节点类

  • 为什么要用类: 节点 = 数据取 + 指针区(指向下一个节点的地址)
  • 类: 属性 + 操作的封装

插入: Python3定义类用不用继承object的区别

# Python3 编写类的是在, object 有无的区别

class A:
name = "youge"


class B(object):
name = 'youge'


if __name__ == '__main__':

a, b = A(), B()

print('无object的类拥有:', dir(a))
print('有object的类拥有:', dir(b))
无object的类拥有: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'name']
有object的类拥有: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'name']
class Node(object):
""""节点类""""
def __init__(self, data=None):
self.data = data
self.next = None # Pyhton 的 "=" 就直接想象成 ----> 指向即可(指向下一个节点对象)
node1 = Node(123)  # 实例化一个节点对象

print('这是一个节点对象, 包含属性和操作', node1)

print(f'该节点的数据是:{node1.data}, 指向的节点对象是:{node1.next}')
这是一个节点对象, 包含属性和操作 <__main__.Node object at 0x0000021B939406A0>
该节点的数据是:123, 指向的节点对象是:None

单链表类ADT

  • is_empty() 判断链表是否为空
  • lenghth() 链表的长度(元素个数)
  • travel 遍历整个链表
  • add(item) 从链表头部增加元素(值)
  • append(item) 从链表尾部增加元素
  • insert(pos, item) 从指定位置(下标)增加元素
  • remove(item) 删除节点
  • search(item)
  • 都是对象方法, 非类方法, 实现时先结构化写出来pass慢慢去实现
class Node(object):
"""节点类""""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def is_empty(self):
pass

def length(self):
pass

def travel(self):
pass

def add(self, item):
pass

def append(self, item):
pass

def insert(self, pos, item):
pass

def remove(self, item):
pass

def search(item):
pass



# 调用
s_lst = SingleLinkList()
s_lst.is_empty()
s_lst.length()
s_lst.travel()
s_lst.add(123)
....

头节点: 将一个节点挂在到单链表中来

  • 链表必须要有一个对象属性来作为头节点
class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None


class SingleLinkList(object):
"""单链表"""

# 头节点可能为空
# 用户可能是先创建一个节点, 作为链表的头节点
def __init__(self, node=None):
self.head = node # 内部使用维护的,不用给外部访问, 应该设为私有变量
self.next = None


# call
node1 = Node(111)
sl_obj = SingleLinkList(node1) # 将head节点作为链表的头节点

print('将节点对象传给链表的head属性:', sl_obj.head)
print('属性是一个对象, 访问值用对象.属性来访问:', sl_obj.head.data)
将节点对象传给链表的head属性: <__main__.Node object at 0x0000021B93710828>
属性是一个对象, 访问值用对象.属性来访问: 111

为什么需要两个类

  • 理解Node类和SingleListLink类 的运作过程
  • 节点类创建节点, 链表类"串联"上节点
# 分析:

link = SigleLinkList() # 包含一个 __head -> None
node = Node(111) # 包含 (111,None)
# 目的: 让链表的 __head属性去指向(111, None)这个节点
# 让 __head -> None 变为 __head -> (111,None), 正好Python的 --> 指向关系, 其实就是 "="

is_empyt 实现

class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
self.next = None

def is_empty(self):
"""链表是否为空"""
# 只要 __head指向的节点是None即链表为空
return self.__head == None

def length(self):
"""链表的长度"""
pass

length实现

# 分析

# (__head)-> (111, None)->(222,None)->(333,None)->(444,None)

# 需要一个游标(指针)cur 从头数到尾, 并对节点计数
# cur->__head, 计数, cur->111, 计数,判断111的next是否存在, 存在则cur->nex....循环
class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
self.next = None

def is_empty(self):
"""链表是否为空"""
# 只要 __head指向的节点是None即链表为空
return self.__head == None

def length(self):
"""链表的长度"""
# 让指针(游标cur)有首先指向头节点对象 cur -> __head
# 即 cur, __head 都指向了头节点对象
cur = self.__head
# 开始计数, 让指针一边移动, 则一边计数
count = 0
# while 循环,让游标移动, 停止条件是当指针指向当前节点的next值为None时
# 关于count取值, 0:cur=None, 1:cur.next == None (指针指向哪为位置)
while cur != None:
count += 1
# 实现指针的"移动": Python中其实就是"="表示 "->" , 注意'='要从右往左看
cur = cur.next # 右到左: 将当前节点的next, 让cur去指向
return count

travel 实现

  • 也是变量每个节点, 打印出该节点的数据而已
# 分析

# 也是游标移动, while的终止条件是当 cur==None时即可
class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
self.next = None

def is_empty(self):
"""链表是否为空"""
# 只要 __head指向的节点是None即链表为空
return self.__head == None

def length(self):
"""链表的长度"""
# 让指针(游标cur)有首先指向头节点对象 cur -> __head
# 即 cur, __head 都指向了头节点对象
cur = self.__head
# 开始计数, 让指针一边移动, 则一边计数
count = 0
# while 循环,让游标移动, 停止条件是当指针指向当前节点的next值为None时
# 关于count取值, 0:cur=None, 1:cur.next == None (指针指向哪为位置)
while cur != None:
count += 1
# 实现指针的"移动": Python中其实就是"="表示 "->" , 注意'='要从右往左看
cur = cur.next # 右到左: 将当前节点的next, 让cur去指向
return count


def travel(self):
"""元素遍历"""
# cur->__head
cur = self.__head
# 移动, 然后print节点的元素, 当cur==None时终止
while cur != None:
print(cur.data)
cur = cur.next

append 实现(尾插法)

  • 尾部插入元素: 即遍历到最后一节点, 将其next指向插入的元素节点即可
  • 首先要将用户给定的元素(值), 作为一个节点对象(data,next)
  • __ head -> 111 ->222 ->None -> (333, None)
class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
self.next = None

def is_empty(self):
"""链表是否为空"""
# 只要 __head指向的节点是None即链表为空
return self.__head == None

def length(self):
"""链表的长度"""
# 让指针(游标cur)有首先指向头节点对象 cur -> __head
# 即 cur, __head 都指向了头节点对象
cur = self.__head
# 开始计数, 让指针一边移动, 则一边计数
count = 0
# while 循环,让游标移动, 停止条件是当指针指向当前节点的next值为None时
# 关于count取值, 0:cur=None, 1:cur.next == None (指针指向哪为位置)
while cur != None:
count += 1
# 实现指针的"移动": Python中其实就是"="表示 "->" , 注意'='要从右往左看
cur = cur.next # 右到左: 将当前节点的next, 让cur去指向
return count


def travel(self):
"""元素遍历"""
# cur->__head
cur = self.__head
# 移动, 然后print节点的元素, 当cur==None时终止
while cur != None:
print(cur.data, end=' ' )
cur = cur.next

def append(self, item):
"""尾部添加元素"""
node = Node(item) # 用户只关心值, 不关心指针
# 从头往后遍历
cur = self.__head
# 考虑空链表情况 if cur is None:
if self.is_empty():
# 直接将 __head -> node即可
self.__head = node
else:
while cur.next != None:
cur = cur.next
# 将尾节点的next -> node
cur.next = node

is_empty, length, travel 测试

# 测试
l = SingleLinkList()

print(l.is_empty())
print(l.length())

l.append(0)
print(l.is_empty())
print(l.length())

for i in range(8):
l.append(i)

l.travel()
True
0
False
1
0 0 1 2 3 4 5 6 7

add 实现(头插法)

  • 构建要插入的节点对象
  • 头插的顺序是先让新元素的next->其余节点, 然后链表的__ head -> node
# 分析
# link: head->(111, None)->(222,None)

# 目标: head->(000, None)->(111, None)->(222,None)
# 1. (000, Next)->(111, None)->(222,None)
# 2. __head -> (000, Next)->.....
class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
self.next = None

def is_empty(self):
"""链表是否为空"""
# 只要 __head指向的节点是None即链表为空
return self.__head == None

def length(self):
"""链表的长度"""
# 让指针(游标cur)有首先指向头节点对象 cur -> __head
# 即 cur, __head 都指向了头节点对象
cur = self.__head
# 开始计数, 让指针一边移动, 则一边计数
count = 0
# while 循环,让游标移动, 停止条件是当指针指向当前节点的next值为None时
# 关于count取值, 0:cur=None, 1:cur.next == None (指针指向哪为位置)
while cur != None:
count += 1
# 实现指针的"移动": Python中其实就是"="表示 "->" , 注意'='要从右往左看
cur = cur.next # 右到左: 将当前节点的next, 让cur去指向
return count


def travel(self):
"""元素遍历"""
# cur->__head
cur = self.__head
# 移动, 然后print节点的元素, 当cur==None时终止
while cur != None:
print(cur.data, end=' ' )
cur = cur.next

def append(self, item):
"""尾部添加元素"""
node = Node(item) # 用户只关心值, 不关心指针
# 从头往后遍历
cur = self.__head
# 考虑空链表情况 if cur is None:
if self.is_empty():
# 直接将 __head -> node即可
self.__head = node
else:
while cur.next != None:
cur = cur.next
# 将尾节点的next -> node
cur.next = node

def add(self, item):
"""从头部插入元素"""
node = Node(item)
# 顺序很关键, 先node的next指向原先 __head所指向的节点, 然后再更新__head->node
node.next = self.__head.next
self.__head = node
# 测试
l = SingleLinkList()

print(l.is_empty())
print(l.length())

l.append(0)
print(l.is_empty())
print(l.length())

for i in range(8):
l.append(i)

# 头插入一个 666
l.add(666)
l.travel()
True
0
False
1
666 0 1 2 3 4 5 6 7

insert 实现

  • 从任意位置插入元素: 如何定位pos(下标)
  • 找到要插入的位置下标: count计数
  • 用该位置的该node的next->当前位置节点, 前一个节点的Next指向该node, 注意顺序哦
# 分析
# link: (111, None)->(222,None)->(333,None)

# 目标: (111, None)->(222,None)->(444,None)->(333,None)

# 顺序: (444,None)->(333,None); ...(222,None)->(444,None)
class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
self.next = None

def is_empty(self):
"""链表是否为空"""
# 只要 __head指向的节点是None即链表为空
return self.__head == None

def length(self):
"""链表的长度"""
# 让指针(游标cur)有首先指向头节点对象 cur -> __head
# 即 cur, __head 都指向了头节点对象
cur = self.__head
# 开始计数, 让指针一边移动, 则一边计数
count = 0
# while 循环,让游标移动, 停止条件是当指针指向当前节点的next值为None时
# 关于count取值, 0:cur=None, 1:cur.next == None (指针指向哪为位置)
while cur != None:
count += 1
# 实现指针的"移动": Python中其实就是"="表示 "->" , 注意'='要从右往左看
cur = cur.next # 右到左: 将当前节点的next, 让cur去指向
return count


def travel(self):
"""元素遍历"""
# cur->__head
cur = self.__head
# 移动, 然后print节点的元素, 当cur==None时终止
while cur != None:
print(cur.data, end=' ' )
cur = cur.next

def append(self, item):
"""尾部添加元素"""
node = Node(item) # 用户只关心值, 不关心指针
# 从头往后遍历
cur = self.__head
# 考虑空链表情况 if cur is None:
if self.is_empty():
# 直接将 __head -> node即可
self.__head = node
else:
while cur.next != None:
cur = cur.next
# 将尾节点的next -> node
cur.next = node

def add(self, item):
"""从头部插入元素"""
node = Node(item)
# 顺序很关键, 先node的next指向原先 __head所指向的节点, 然后再更新__head->node
node.next = self.__head.next
self.__head = node

def insert(self, pos, item):
"""从任意位置插入元素"""
# 考虑pos特殊情况
if pos <= 0:
self.add(item)
elif pos > (self.length()-1): # 不能包含 ==, 因为insert是前插入哦
self.append(item)
else:
node = Node(item)
# 前一个节点, 引入一个游标 pre 表示前一个节点
pre = self.__head

count = 0
while count < (pos-1): # 到该位置的前一个节点时终止
count += 1
pre = pre.next # 移动
# 当循环结束后,pre指向(pos-1) 对该位置的前一个节点操作:
# 1. 先用node.next -> 原先节点指向的node
# 2. pre的next -> node
node.next = pre.next
pre.next = node
# 测试
l = SingleLinkList()

print(l.is_empty())
print(l.length())

l.append(0)
print(l.is_empty())
print(l.length())

for i in range(8):
l.append(i)

# 头插入一个 666
l.add(666)

# inset
l.insert(-1, 999)
l.insert(2, 6699)
l.insert(888,999)
l.insert(5,'cj')

l.travel()
True
0
False
1
999 0 6699 1 2 cj 3 4 5 6 7 999

search实现

  • 游标去遍历, 比对值
class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
self.next = None

def is_empty(self):
"""链表是否为空"""
# 只要 __head指向的节点是None即链表为空
return self.__head == None

def length(self):
"""链表的长度"""
# 让指针(游标cur)有首先指向头节点对象 cur -> __head
# 即 cur, __head 都指向了头节点对象
cur = self.__head
# 开始计数, 让指针一边移动, 则一边计数
count = 0
# while 循环,让游标移动, 停止条件是当指针指向当前节点的next值为None时
# 关于count取值, 0:cur=None, 1:cur.next == None (指针指向哪为位置)
while cur != None:
count += 1
# 实现指针的"移动": Python中其实就是"="表示 "->" , 注意'='要从右往左看
cur = cur.next # 右到左: 将当前节点的next, 让cur去指向
return count


def travel(self):
"""元素遍历"""
# cur->__head
cur = self.__head
# 移动, 然后print节点的元素, 当cur==None时终止
while cur != None:
print(cur.data, end=' ' )
cur = cur.next

def append(self, item):
"""尾部添加元素"""
node = Node(item) # 用户只关心值, 不关心指针
# 从头往后遍历
cur = self.__head
# 考虑空链表情况 if cur is None:
if self.is_empty():
# 直接将 __head -> node即可
self.__head = node
else:
while cur.next != None:
cur = cur.next
# 将尾节点的next -> node
cur.next = node

def add(self, item):
"""从头部插入元素"""
node = Node(item)
# 顺序很关键, 先node的next指向原先 __head所指向的节点, 然后再更新__head->node
node.next = self.__head.next
self.__head = node

def insert(self, pos, item):
"""从任意位置插入元素"""
# 考虑pos特殊情况
if pos <= 0:
self.add(item)
elif pos > (self.length()-1): # 不能包含 ==, 因为insert是前插入哦
self.append(item)
else:
node = Node(item)
# 前一个节点, 引入一个游标 pre 表示前一个节点
pre = self.__head

count = 0
while count < (pos-1): # 到该位置的前一个节点时终止
count += 1
pre = pre.next # 移动
# 当循环结束后,pre指向(pos-1) 对该位置的前一个节点操作:
# 1. 先用node.next -> 原先节点指向的node
# 2. pre的next -> node
node.next = pre.next
pre.next = node

def search(self, item):
"""查找元素"""
cur = self.__head
# 循环遍历比较值即可
while cur != None:
if cur.data == item:
return True
else:
# 记得移动游标 ,不然就死循环了
cur = cur.next
return False

remove实现

  • 删除某个元素, 删掉第一次找到的那个元素哦
  • 原理: cur找到该节点后, 用pre.next -> cur.next 即可
  • 即需要两个游标: pre 和cur

但其实, 只需要pre就能达到效果呢

  • pre.next -> node.next 即** pre.next -> pre.next.next**
class Node(object):
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList(object):
"""单链表"""
def __init__(self, node=None):
self.__head = node
self.next = None

def is_empty(self):
"""链表是否为空"""
# 只要 __head指向的节点是None即链表为空
return self.__head == None

def length(self):
"""链表的长度"""
# 让指针(游标cur)有首先指向头节点对象 cur -> __head
# 即 cur, __head 都指向了头节点对象
cur = self.__head
# 开始计数, 让指针一边移动, 则一边计数
count = 0
# while 循环,让游标移动, 停止条件是当指针指向当前节点的next值为None时
# 关于count取值, 0:cur=None, 1:cur.next == None (指针指向哪为位置)
while cur != None:
count += 1
# 实现指针的"移动": Python中其实就是"="表示 "->" , 注意'='要从右往左看
cur = cur.next # 右到左: 将当前节点的next, 让cur去指向
return count


def travel(self):
"""元素遍历"""
# cur->__head
cur = self.__head
# 移动, 然后print节点的元素, 当cur==None时终止
while cur != None:
print(cur.data, end=' ' )
cur = cur.next

def append(self, item):
"""尾部添加元素"""
node = Node(item) # 用户只关心值, 不关心指针
# 从头往后遍历
cur = self.__head
# 考虑空链表情况 if cur is None:
if self.is_empty():
# 直接将 __head -> node即可
self.__head = node
else:
while cur.next != None:
cur = cur.next
# 将尾节点的next -> node
cur.next = node

def add(self, item):
"""从头部插入元素"""
node = Node(item)
# 顺序很关键, 先node的next指向原先 __head所指向的节点, 然后再更新__head->node
node.next = self.__head.next
self.__head = node

def insert(self, pos, item):
"""从任意位置插入元素"""
# 考虑pos特殊情况
if pos <= 0:
self.add(item)
elif pos > (self.length()-1): # 不能包含 ==, 因为insert是前插入哦
self.append(item)
else:
node = Node(item)
# 前一个节点, 引入一个游标 pre 表示前一个节点
pre = self.__head

count = 0
while count < (pos-1): # 到该位置的前一个节点时终止
count += 1
pre = pre.next # 移动
# 当循环结束后,pre指向(pos-1) 对该位置的前一个节点操作:
# 1. 先用node.next -> 原先节点指向的node
# 2. pre的next -> node
node.next = pre.next
pre.next = node

def search(self, item):
"""查找元素"""
cur = self.__head
# 循环遍历比较值即可
while cur != None:
if cur.data == item:
return True
return False

def remove(self, item):
"""删除首次找到的该元素-两个游标"""
pre = None
cur = self.__head
while cur != None:
if cur.data == item:
# 判断是否为 head
if cur == self.__head:
self.__head = cur.next
else:
# 删除: pre.next -> cur.next
pre.next = cur.next
break
else:
# 移动: pre移动一次, cur也移动一次, 顺序: 必须先移动pre, 才能跟上cur的节奏哦
pre = cur
cur = cur.next
# 测试
l = SingleLinkList()

print(l.is_empty())
print(l.length())

l.append(0)
print(l.is_empty())
print(l.length())

for i in range(8):
l.append(i)

# 头插入一个 666
l.add(666)

# inset
l.insert(-1, 999)
l.insert(2, 6699)
l.insert(888,999)
l.insert(5,'cj')
# 遍历
l.travel()

l.remove(999)
# l.remove('aaa')
True
0
False
1
999 0 6699 1 2 cj 3 4 5 6 7 999
l.travel()
0 6699 1 2 cj 3 4 5 6 7 999 
l.remove(999)
l.travel()
0 6699 1 2 cj 3 4 5 6 7 

单链表完整实现

  • object Python3是默认继承的
  • 理解指向在Python中就是"=", 从右往左看
  • 要在头脑中有画面感, 毕竟, "="就是'->'指针呀
class Node:
"""节点类"""
def __init__(self, data=None):
self.data = data
self.next = None

class SingleLinkList:
"""单链表类"""
def __init__(self, node=None):
"""构造链表的头节点"""
self.__head = node

@property
def is_empty(self):
"""链表是否为空"""
return self.__head == None

@property
def length(self):
"""链表中元素的个数"""
current = self.__head
count = 0
while current is not None:
count += 1
# 游标不断向后移动
current = current.next
return count

def travel(self):
"""遍历列表元素"""
current = self.__head
while current != None:
print(current.data)
current = current.next

def append(self, item):
"""尾部插入元素"""
node = Node(item)
current = self.__head
if self.is_empty:
self.__head = node
else:
while current.next is not None:
current = current.next
current.next = node

def add(self, item):
"""头部插入元素"""
node = Node(item)
if self.is_empty:
self.__head = node
else:
# 插入顺序,脑海里要有画面感
node.next = self.__head
self.__head = node

def insert(self, position, item):
"""从指定位置插入元素"""
if position <= 0:
self.add(item)
elif position > (self.length-1):
self.append(item)
else:
node = Node(item)
prior = self.__head
count = 0
while count < (position-1):
count += 1
prior = prior.next
# 此时prior已定位到当前位置前一个节点
node.next = prior.next
prior.next = node

def search(self, item):
"""搜索元素并范围其位置-首次被找到"""
position = 0
current = self.__head
while current:
position += 1
if current.data == item:
return position-1
else:
# 记得移动游标,不然就死循环了
current = current.next
return False

def remove(self, item):
"""删除元素-首次被找到"""
# 删除: prior.next -> prior.next.next 或者: prior.next = cur.next
# prior = self.__head
# position = self.search(item)
# if position:
# count = 0
# while prior:
# count += 1
# if count == position-1
# prior = prior.next

# return

# 这里采用: prior.next = cur.next
prior = None
current = self.__head
while current:
if current.data == item:
# 判断是否为头节点
if current == self.__head:
self.__head = current.next
else:
prior.next = current.next
break
else:
# prior先移动一次,到current的位置, 然后current再往后移动一次
prior = current
current = current.next
l = SingleLinkList()
l.is_empty
True
l.append(1)
l.add(0)
l.append('cj')
l.insert(999,666)
l.travel()
l.search('cj')
0
1
cj
666
2
l.add(333)
l.travel()
333
333
333
0
1
cj
666

耐心和恒心, 总会获得回报的.



标签:__,None,markdown,jupyter,cur,Python,self,head,next
From: https://blog.51cto.com/u_14195239/5751010

相关文章

  • Python基础 - 序列结构
    对内置的常用数据结构,列表,字典,元组,集合的基本点看书整理.有序序列:列表、元组、字符串无序序列:字典、集合可变序列:列表、字典、集合不可变......
  • Python基础 - 面向对象
    面向对象基础入门,理解概念为主,其妙用需要很长时间去领悟哦.引入Python既是面向过程,也能面向对象.初学来理解为啥要面向对象,不太可能,用处......
  • 【AI白身境】学AI必备的python基础
    今天是新专栏《AI白身境》的第三篇,所谓白身,就是什么都不会,还没有进入角色。上一篇给大家介绍了如何正确使用Linux,如何利用shell,vim,git这三大神器。相信大家也掌握的差不多了......
  • 【AI白身境】只会用Python?g++,CMake和Makefile了解一下
    今天是新专栏《AI白身境》的第六篇,所谓白身,就是什么都不会,还没有进入角色。对于大部分小白来说,因为python用的太爽,以致于或许都没有听说过CMake。python是脚本语言,而当前大......
  • 【Python进阶】带你使用Matplotlib进行可视化
    欢迎来到专栏《Python进阶》。在这个专栏中,我们会讲述Python的各种进阶操作,包括Python对文件、数据的处理,Python各种好用的库如NumPy、Scipy、Matplotlib、Pandas的使用等等......
  • Python全栈工程师之从网页搭建入门到Flask全栈项目实战(1) - ES6标准入门和Flex布局
    1.简述1.什么是ES6?ES6,全称ECMAScript6.0,是JavaScript的下一个版本标准,2015年6月份发版。ES6的主要目的是为了解决ES5的先天不足。2.了解ES和JS之间的关系ES=......
  • 博客园Markdown语法代码块折叠
    博客Markdown语法代码块默认不折叠,如果代码块过长很影响读者体验,可以使用自带博客园样式进行折叠。语法如下:请注意:在要折叠的代码内容前后各插入一行空格<details><......
  • Python3.7之后使用协程进行并发编程更加容易
    [本文出自天外归云的博客园]在python3.7之后,async和await关键字的使用变得更加容易。async和await总是成对出现,async定义协程任务,await等待协程任务完成。代码如下:imp......
  • python 运行错误收集
    目录global全局声明错误global全局声明错误SyntaxError:name'is_login'isusedpriortoglobaldeclaration解决办法:globalis_login放在ifis_login:的上面is_l......
  • 视频直播源码,python实现列表插入、查找、删除
    视频直播源码,python实现列表插入、查找、删除#列表的插入、查找、删除实现 classTestArray:  def__init__(self,capacity)->None:    #由于python的lis......