首页 > 编程语言 >AVX图像算法优化系列二: 使用AVX2指令集加速查表算法。

AVX图像算法优化系列二: 使用AVX2指令集加速查表算法。

时间:2022-10-12 11:25:24浏览次数:89  
标签:mm256 __ 速查表 int unsigned char 算法 AVX2 epi32

  查表算法,无疑也是一种非常常用、有效而且快捷的算法,我们在很多算法的加速过程中都能看到他的影子,在图像处理中,尤其常用,比如我们常见的各种基于直方图的增强,可以说,在photoshop中的调整菜单里80%的算法都是用的查表,因为他最终就是用的曲线调整。

  普通的查表就是提前建立一个表,然后在执行过程中算法计算出一个索引值,从表中查询索引对应的表值,并赋值给目标地址,比如我们常用的曲线算法如下所示:

int IM_Curve_PureC(unsigned char *Src, unsigned char *Dest, int Width, int Height, int Stride, unsigned char *TableB, unsigned char *TableG, unsigned char *TableR)
{
    int Channel = Stride / Width;if (Channel == 1)
    {
        for (int Y = 0; Y < Height; Y++)
        {
            unsigned char *LinePS = Src + Y * Stride;
            unsigned char *LinePD = Dest + Y * Stride;
            for (int X = 0; X < Width; X++)
            {
                LinePD[X] = TableB[LinePS[X]];
            }
        }
    }
    else if (Channel == 3)
    {
        for (int Y = 0; Y < Height; Y++)
        {
            unsigned char *LinePS = Src + Y * Stride;
            unsigned char *LinePD = Dest + Y * Stride;
            for (int X = 0; X < Width; X++)
            {
                LinePD[0] = TableB[LinePS[0]];
                LinePD[1] = TableG[LinePS[1]];
                LinePD[2] = TableR[LinePS[2]];
                LinePS += 3;
                LinePD += 3;
            }
        }
    }return IM_STATUS_OK;
}

  通常我们认为这样的算法是很高效的,当然,我们其实还可以做一定的优化,比如使用下面的四路并行:

int IM_Curve_PureC(unsigned char *Src, unsigned char *Dest, int Width, int Height, int Stride, unsigned char *TableB, unsigned char *TableG, unsigned char *TableR)
{
    int Channel = Stride / Width;
    if ((Channel != 1) && (Channel != 3))                        return IM_STATUS_INVALIDPARAMETER;
    if ((Src == NULL) || (Dest == NULL))                        return IM_STATUS_NULLREFRENCE;
    if ((Width <= 0) || (Height <= 0))                            return IM_STATUS_INVALIDPARAMETER;
    int BlockSize = 4, Block = Width / BlockSize;
    if (Channel == 1)
    {
        for (int Y = 0; Y < Height; Y++)
        {
            unsigned char *LinePS = Src + Y * Stride;
            unsigned char *LinePD = Dest + Y * Stride;
            for (int X = 0; X < Block * BlockSize; X += BlockSize)
            {
                LinePD[X + 0] = TableB[LinePS[X + 0]];
                LinePD[X + 1] = TableB[LinePS[X + 1]];
                LinePD[X + 2] = TableB[LinePS[X + 2]];
                LinePD[X + 3] = TableB[LinePS[X + 3]];
            }
            for (int X = Block * BlockSize; X < Width; X++)
            {
                LinePD[X] = TableB[LinePS[X]];
            }
        }
    }
    else if (Channel == 3)
    {
        for (int Y = 0; Y < Height; Y++)
        {
            unsigned char *LinePS = Src + Y * Stride;
            unsigned char *LinePD = Dest + Y * Stride;
            for (int X = 0; X < Block * BlockSize; X += BlockSize)
            {
                LinePD[0] = TableB[LinePS[0]];
                LinePD[1] = TableG[LinePS[1]];
                LinePD[2] = TableR[LinePS[2]];
                LinePD[3] = TableB[LinePS[3]];
                LinePD[4] = TableG[LinePS[4]];
                LinePD[5] = TableR[LinePS[5]];
                LinePD[6] = TableB[LinePS[6]];
                LinePD[7] = TableG[LinePS[7]];
                LinePD[8] = TableR[LinePS[8]];
                LinePD[9] = TableB[LinePS[9]];
                LinePD[10] = TableG[LinePS[10]];
                LinePD[11] = TableR[LinePS[11]];
                LinePS += 12;
                LinePD += 12;
            }
            for (int X = Block * BlockSize; X < Width; X++)
            {
                LinePD[0] = TableB[LinePS[0]];
                LinePD[1] = TableG[LinePS[1]];
                LinePD[2] = TableR[LinePS[2]];
                LinePS += 3;
                LinePD += 3;
            }
        }
    }
    return IM_STATUS_OK;
}

  这样效率能进一步的提高。

  在早期我们的关注中,我也一直想再次提高这个算法的效率,但是一直因为他太简单了,而无法有进一步的提高,在使用SSE指令集时,我们也没有找到合适的指令,只有当查找表为16字节的表时,可以使用_mm_shuffle_epi8快速实现,详见【算法随记七】巧用SIMD指令实现急速的字节流按位反转算法。 一文的描述。 

  在我们再次接触AVX指令集,正如上一篇关于AVX指令的文章所述,他增加了非常具有特色的gather系列指令,具体有哪些如下图所示:

      

  有一大堆啊,其实看明白了,就只有2大类,每大类里有2个小系列,每个系列里又有4中数据类型,

  两大类为 :针对128位的类型的gather和针对256位的gather。

  两个系列为:带mask和不带mask系列。

  4中数据类型为: int32、int64、float、double。

  当然,里面还有一些64为地址和32位地址的区别,因此又增加了一些列的东西,我个人认为其中最常用的函数只有4个,分别是:_mm_i32gather_epi32 、_mm256_i32gather_epi32、_mm_i32gather_ps、_mm256_i32gather_ps,我们以_mm256_i32gather_epi32为例。

  注意,这里所以下,不要以为_mm_i32gather_ps这样的intrinsics指令以_mm开头,他就是属于SSE的指令,实际行他并不是,他是属于AVX2的,只是高级别的指令集对老指令的有效补充。

  _mm256_i32gather_epi32的相关说明如下:    

                    

   其作用,翻译过来就是从固定的基地址base_addr开始, 燃用偏移量由 vindex提供,注意这里的vindex是一个__m256i数据类型,里面的数据要把它看成8个int32类型,即保存了8个数据的地址偏移量,最后一个scale表示地址偏移量的放大系数,容许的值只有1、2、4、8,代表了字节,双字节,四字节和把字节的意思,通常_mm256_i32gather_epi32一般都是使用的4这个数据。

  那么注意看这些gather函数,最下的操作单位都是int32,因此,如果我们的查找表是byte或者short类型,这个就有点困难了,正如我们上面的Cure函数一样,是无法直接使用这个函数的。

  那么我我们来看看一个正常的int型表,使用两者之间大概有什么区别呢,以及是如何使用该函数的,为了测试公平,我把正常的查找表也做了展开。

int main()
{
    const int Length = 4000 * 4000;
    int *Src = (int *)calloc(Length, sizeof(int));
    int *Dest = (int *)calloc(Length, sizeof(int));
    int *Table = (int *)calloc(65536, sizeof(int));
    for (int Y = 0; Y < Length; Y++)        Src[Y] = rand();    //    产生的随机数在0-65535之间,正好符号前面表的大小
    for (int Y = 0; Y < 65536; Y++)
    {
        Table[Y] = 65535 - Y;    //    随意的分配一些数据
    }
    LARGE_INTEGER nFreq;//LARGE_INTEGER在64位系统中是LONGLONG,在32位系统中是高低两个32位的LONG,在windows.h中通过预编译宏作定义
    LARGE_INTEGER nBeginTime;//记录开始时的计数器的值
    LARGE_INTEGER nEndTime;//记录停止时的计数器的值
    double time;
    QueryPerformanceFrequency(&nFreq);//获取系统时钟频率
    QueryPerformanceCounter(&nBeginTime);//获取开始时刻计数值
    for (int Y = 0; Y < Length; Y += 4)
    {
        Dest[Y + 0] = Table[Src[Y + 0]];
        Dest[Y + 1] = Table[Src[Y + 1]];
        Dest[Y + 2] = Table[Src[Y + 2]];
        Dest[Y + 3] = Table[Src[Y + 3]];
    }
    QueryPerformanceCounter(&nEndTime);//获取停止时刻计数值
    time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) * 1000 / (double)nFreq.QuadPart;//(开始-停止)/频率即为秒数,精确到小数点后6位
    printf("%f   \n", time);

    QueryPerformanceCounter(&nBeginTime);//获取开始时刻计数值
    for (int Y = 0; Y < Length; Y += 16)
    {
        __m256i Index0 = _mm256_loadu_si256((__m256i *)(Src + Y));
        __m256i Index1 = _mm256_loadu_si256((__m256i *)(Src + Y + 8));
        __m256i Value0 = _mm256_i32gather_epi32(Table, Index0, 4);    
        __m256i Value1 = _mm256_i32gather_epi32(Table, Index1, 4);
        _mm256_storeu_si256((__m256i *)(Dest + Y), Value0);
        _mm256_storeu_si256((__m256i *)(Dest + Y + 8), Value1);
    }
    QueryPerformanceCounter(&nEndTime);//获取停止时刻计数值
    time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) * 1000 / (double)nFreq.QuadPart;//(开始-停止)/频率即为秒数,精确到小数点后6位
    printf("%f   \n", time);
    free(Src);
    free(Dest);
    free(Table);

    getchar();
    return 0;
}

  直接使用这句即可完成查表工作:__m256i Value0 = _mm256_i32gather_epi32(Table, Index0, 4);

  这是一个比较简单的应用场景,在我本机的测试中,普通C语言的耗时大概是27ms,AVX版本的算法那耗时大概是17ms,速度有1/3的提升。考虑到加载内存和保存数据在本代码中占用的比重明显较大,因此,提速还是相当明显的。 

  我们回到刚才的关于Curve函数的应用,因为gather相关指令最小的收集粒度都是32位,因此,对于字节版本的表是无论为力的,但是为了能借用这个函数实现查表,我们可以稍微对输入的参数做些手续,再次构造一个int类型的表格,即使用如下代码(弧度版本,Channel == 1):

int Table[256];
for (int Y = 0; Y < 256; Y++)
{
       Table[Y] = TableB[Y];
}

  这样这个表就可以用了,对于24位我们也可以用类似的方式构架一个256*3个int元素的表。

  但是我们又面临着另外一个问题,即_mm256_i32gather_epi32这个返回的是8个int32类型的整形数,而我们需要的返回值确实字节数,所以这里就又涉及到8个int32数据转换为8个字节数并保存的问题,当然为了更为高效的利用指令集,我们这里考虑同时把2个__m256i类型里的16个int32数据同时转换为16个字节数,这个可以用如下的代码高效的实现:

for (int Y = 0; Y < Height; Y++)
{
    unsigned char *LinePS = Src + Y * Stride;
    unsigned char *LinePD = Dest + Y * Stride;
    for (int X = 0; X < Block * BlockSize; X += BlockSize)
    {
        __m128i SrcV = _mm_loadu_si128((__m128i *)(LinePS + X));
        //    int32    A0    A1    A2    A3    A4    A5    A6    A7
        __m256i ValueL = _mm256_i32gather_epi32(Table, _mm256_cvtepu8_epi32(SrcV), 4);
        //    int32    B0    B1    B2    B3    B4    B5    B6    B7
        __m256i ValueH = _mm256_i32gather_epi32(Table, _mm256_cvtepu8_epi32(_mm_srli_si128(SrcV, 8)), 4);
        //    short    A0    A1    A2    A3    B0    B1    B2    B3    A4    A5    A6    A7    B4    B5    B6    B7
        __m256i Value = _mm256_packs_epi32(ValueL, ValueH);
        //    byte    A0    A1    A2    A3    B0    B1    B2    B3    0    0    0    0    0    0    0    0    A4    A5    A6    A7    B4    B5    B6    B7        0    0    0    0    0    0    0    0    
        Value = _mm256_packus_epi16(Value, _mm256_setzero_si256());
        //    byte    A0    A1    A2    A3    A4    A5    A6    A7    B0    B1    B2    B3    B4    B5    B6    B7    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    
        Value = _mm256_permutevar8x32_epi32(Value, _mm256_setr_epi32(0, 4, 1, 5, 2, 3, 6, 7));

        _mm_storeu_si128((__m128i *)(LinePD + X), _mm256_castsi256_si128(Value));
    }
    for (int X = Block * BlockSize; X < Width; X++)
    {
        LinePD[X] = TableB[LinePS[X]];
    }

    上面的代码里涉及到了没有按常规方式出牌的_mm256_packs_epi32、_mm256_packus_epi16等等,最后我们也是需要借助于AVX2提供的_mm256_permutevar8x32_epi32才能把那些数据正确的调整为需要的格式。

  对于彩色的图像,就要稍微复杂一些了,因为涉及到RGB格式的排布,同时考虑一些对齐问题,最友好的方式就是一次性处理8个像素,24个字节,这一部分留给有兴趣的读者自行研究。 

  在我本机的CPU中测试呢,灰度版本的查找表大概有20%的提速,彩色版本的要稍微多一些,大概有30%左右。 

  这些提速其实不太明显,因为在整个过程中处理内存耗时较多,他并不是以计算为主要过程的算法,当我们某个算法中见也有查找时,并且为了计算查找表时,需要很多的数学运算去进行隐射的坐标计算时,这个时候这些隐射计算通常都是有浮点参与,或其他各种复杂的计算参与,这个时候用SIMD指令计算这些过程是能起到很大的加速作用的,在我们没有AVX2之前,使用SSE实现时,到了进行查表时通常的做法都是把前通过SSE计算得到的坐标的_m128i元素的每个值使用_mm_extract_epi32(这个是内在的SSE指令,不是用其他伪指令拼合的)提取出每个坐标值,然后在使用_mm_set相关的函数把查找表的返回值拼接成一个行的SSE变量,以便进行后续的计算,比如下面的代码:

      

  这个时候使用AVX2的这个指令就方便了,如下所示:

  注意到上面的Texture其实是个字节类型的数组,也就是一副图像,对应的C代码如下所示:

int SampleXF = IM_ClampI(ClipXF >> 16, 0, Width - 1);            //    试着拆分VX和VY的符号情况分开写,减少ClampI的次数,结果似乎区别不是特别大,因此优化意义不大
int SampleXB = IM_ClampI(ClipXB >> 16, 0, Width - 1);
int SampleYF = IM_ClampI(ClipYF >> 16, 0, Height - 1);
int SampleYB = IM_ClampI(ClipYB >> 16, 0, Height - 1);
unsigned char *SampleF = Texture + (SampleYF * Stride + SampleXF);
unsigned char *SampleB = Texture + (SampleYB * Stride + SampleXB);
Sum += SampleF[0] + SampleB[0];

  可见这里实际上是对字节类型进行查表,所以这里最后的那个scale参数我们取的是1,即中间的偏移是以字节为单位的,但是这里其实隐含着一个问题,即如果我们取样的是图片最右下角的那个位置的像素,因为要从那个位置开始读取四个字节的内存,除非图像原始格式是BGRA的,否则,必然会读取到超出图像内存外的内存数据,这个在普通的C语言中,已改会弹出一个系统错误框,蹦的一下说访问非法内存,但是我看用这个指令似乎目前还没有遇到这个错误,哪怕认为的输入一个会犯错误的坐标。

  如果是这样的话,得到的一个好处就是对于那些图像扭曲滤镜、缩放图像中哪些重新计算坐标的函数来说,不用临时构建一副同样数据的int类型图了,而可以直接放心的使用这个函数了。

  最后说明一点,经过在其他一些机器上测试,似乎有些初代即使支持AVX2的CPU,使用这些函数后相应的算法的执行速度反而有下降的可能性,不知道为什么。 

  在我提供的SIMD指令优化的DEMO中,在 Adjust-->Exposure菜单下可以看到使用C语言和使用AVX进行查表优化的功能,有兴趣的作者可以自行比较下。

        

   很明显,在这里SSE优化选项是无法使用的。

        本文可执行Demo下载地址:  https://files.cnblogs.com/files/Imageshop/SSE_Optimization_Demo.rar,菜单中蓝色字体显示的部分为已经使用AVX加速的算法,如果您的硬件中不支持AVX2,可能这个DEMO你无法运行。

        如果想时刻关注本人的最新文章,也可关注公众号:

                        

标签:mm256,__,速查表,int,unsigned,char,算法,AVX2,epi32
From: https://www.cnblogs.com/Imageshop/p/16778997.html

相关文章

  • 搜索中常见数据结构与算法探究(二)
    本文介绍了几个常见的匹配算法,通过算法过程和算法分析介绍了各个算法的优缺点和使用场景,并为后续的搜索文章做个铺垫;读者可以通过比较几种算法的差异,进一步了解匹配算法演进......
  • 算法导论(第15章 动态规划)*
    目录15.1钢条切割自顶向下递归实现使用动态规划方法求解最优钢条切割问题动态规划(dynamicprogramming)与分治方法相似,都是通过组合子问题的解来求解原问题(在这里,“prog......
  • java求最大递增子序列算法
    求最大递增子序列:packagecom.test.algorithm;importjava.util.Arrays;/***CreatedbyAdministratoron2022/10/12.*/publicclassMaxIncrSub{/*......
  • 搜索中常见数据结构与算法探究(二)
    本文介绍了几个常见的匹配算法,通过算法过程和算法分析介绍了各个算法的优缺点和使用场景,并为后续的搜索文章做个铺垫;读者可以通过比较几种算法的差异,进一步了解匹配算法演......
  • 招聘:医疗CBCT算法工程师-40-60万-成都
    招聘:医疗行业职位分享,欢迎转发,欢迎推荐,谢谢!职位:某口腔医疗器械公司-CBCT算法工程师地点:成都年薪:40-60万职责:负责CBCT校正及重建算法的设计、实现。要求:熟悉CBCT几何校正、......
  • 招聘:CT图像算法工程师-30-70W-北京5人
    招聘:医疗行业职位分享,谢谢!职位:某大型医疗上市公司-CT图像算法工程师(招5人)地点:北京年薪:30-70W(看级别)职责:负责医学图像处理算法研发。要求:硕士以上,熟悉图像处理如图像增强,图像......
  • 算法练习-第十六天【二叉树】
    二叉树的深度与高度二叉树的深度:从根节点到该节点的最长简单路径边的条数或节点数(取决于深度是否从1开始)二叉树的高度:从该节点到叶子节点的最长简单路径边的条数或节点数......
  • LeetCode算法笔记 566. 重塑矩阵
    importjunit.framework.TestCase;importjava.util.Arrays;publicclassLeetCode04_1extendsTestCase{/***566.重塑矩阵*在MATLAB中,有......
  • LeetCode算法笔记 121. 买卖股票的最佳时机
    importjunit.framework.TestCase;publicclassLeetCode03_2extendsTestCase{/***121.买卖股票的最佳时机*给定一个数组prices,它的第i......
  • 视频+课件|单目6D姿态估计算法详解
    写在前面感谢「3D视觉从入门到精通」知识星球嘉宾王谷博士为我们带来的主题为单目6D物体姿态估计算法视频讲解,星球成员可免费观看学习。备注:王谷博士,清华大学自动化系BBNCL......