首页 > 编程语言 >人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测

时间:2023-12-28 14:37:58浏览次数:38  
标签:检测 模型 model 关键点 Android 人体


目录

1. 前言

2.人体关键点检测方法

(1)Top-Down(自上而下)方法

(2)Bottom-Up(自下而上)方法:

3.人体关键点检测模型训练

4.人体关键点检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

(2) 将ONNX模型转换为TNN模型

(3) Android端上部署模型

(4) Android测试效果 

(5) 运行APP闪退:dlopen failed: library "libomp.so" not found

5.Android项目源码下载

6.C++实现人体关键点检测


1. 前言

人体关键点检测(Human Keypoints Detection)又称为人体姿态估计2D Pose,是计算机视觉中一个相对基础的任务,是人体动作识别、行为分析、人机交互等的前置任务。一般情况下可以将人体关键点检测细分为单人/多人关键点检测、2D/3D关键点检测,同时有算法在完成关键点检测之后还会进行关键点的跟踪,也被称为人体姿态跟踪。

项目将实现人体关键点检测算法,其中使用YOLOv5模型实现人体检测(Person Detection),使用HRNet,LiteHRNet和Mobilenet-v2模型实现人体关键点检测。为了方便后续模型工程化和Android平台部署,项目支持高精度HRNet检测模型,轻量化模型LiteHRNet和Mobilenet模型训练和测试,并提供Python/C++/Android多个版本;项目分为数据集说明,模型训练和C++/Android部署等多个章节,本篇是项目《人体关键点检测(人体姿势估计)》系列文章之Android实现人体关键点检测,主要分享将Python训练好的模型移植到Android平台,搭建一个可实时的人体关键点检测Android Demo,且支持多人关键点检测。

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_人体骨骼点检测

轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求。下表格给出HRNet,以及轻量化模型LiteHRNet和Mobilenet的计算量和参数量,以及其检测精度。

模型

input-size

params(M)

GFLOPs

AP

HRNet-w32

192×256

28.48M

5734.05M

0.7585

LiteHRNet18

192×256

1.10M

182.15M

0.6237

Mobilenet-v2

192×256

2.63M

529.25M

0.6181

尊重原创,转载请注明出处】 

Android人体关键点检测APP Demo体验(下载):

Android人体关键点检测APP Demo体验

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_人体骨骼点检测_02

  

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_android_03


更多项目《人体关键点检测(人体姿势估计)》系列文章请参考:

  • 人体关键点检测1:人体姿势估计数据集(含下载链接) 
  • 人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码和数据集 
  • 人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测 
  • 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 
  • 手部关键点检测1:手部关键点(手部姿势估计)数据集(含下载链接)
  • 手部关键点检测2:YOLOv5实现手部检测(含训练代码和数据集)
  • 手部关键点检测3:Pytorch实现手部关键点检测(手部姿势估计)含训练代码和数据集
  • 手部关键点检测4:Android实现手部关键点检测(手部姿势估计)含源码 可实时检测
  • 手部关键点检测5:C++实现手部关键点检测(手部姿势估计)含源码 可实时检测

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_2D Pose_04

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_人体姿态估计_05


2.人体关键点检测方法

目前主流的人体关键点检测(人体姿势估计)方法主要两种:一种是Top-Down(自上而下)方法,另外一种是Bottom-Up(自下而上)方法;

(1)Top-Down(自上而下)方法

将人体检测和人体关键点检测(人体姿势估计)检测分离,在图像上首先进行人体目标检测,定位人体位置;然后crop每一个人体图像,再估计人体关键点;这类方法往往比较慢,但姿态估计准确度较高。目前主流模型主要有CPN,Hourglass,CPM,Alpha Pose,HRNet等。

(2)Bottom-Up(自下而上)方法:

先估计图像中所有人体关键点,然后在通过Grouping的方法组合成一个一个实例;因此这类方法在测试推断的时候往往更快速,准确度稍低。典型就是COCO2016年人体关键点检测冠军Open Pose。

通常来说,Top-Down具有更高的精度,而Bottom-Up具有更快的速度;就目前调研而言, Top-Down的方法研究较多,精度也比Bottom-Up(自下而上)方法高。本项目采用Top-Down(自上而下)方法,先使用YOLOv5模型实现人体检测,然后再使用HRNet进行人体关键点检测(人体姿势估计);

本项目基于开源的HRNet进行改进,关于HRNet项目请参考GitHub

HRNet: https://github.com/leoxiaobin/deep-high-resolution-net.pytorch


3.人体关键点检测模型训练

本项目采用Top-Down(自上而下)方法,使用YOLOv5模型实现人体检测,并基于开源的HRNet实现人体关键点检测(人体姿态估计);为了方便后续模型工程化和Android平台部署,项目支持轻量化模型LiteHRNet和Mobilenet模型训练和测试,并提供Python/C++/Android多个版本;轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求

本篇博文主要分享Android版本的模型部署,不包含Python版本的训练代码和相关数据集,关于人体关键点检测的训练方法和数据集说明,可参考 : 

人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码和数据集 

下表格给出HRNet,以及轻量化模型LiteHRNet和Mobilenet的计算量和参数量,以及其检测精度AP; 高精度检测模型HRNet-w32,AP可以达到0.7585,但其参数量和计算量比较大,不合适在移动端部署;LiteHRNet18和Mobilenet-v2参数量和计算量比较少,合适在移动端部署;虽然LiteHRNet18的理论计算量和参数量比Mobilenet-v2低,但在实际测试中,发现Mobilenet-v2运行速度更快。轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求

模型

input-size

params(M)

GFLOPs

AP

HRNet-w32

192×256

28.48M

5734.05M

0.7585

LiteHRNet18

192×256

1.10M

182.15M

0.6237

Mobilenet-v2

192×256

2.63M

529.25M

0.6181

HRNet-w32参数量和计算量太大,不适合在Android手机部署,本项目Android版本只支持部署LiteHRNet和Mobilenet-v2模型;C++版本可支持部署HRNet-w32,LiteHRNet和Mobilenet-v2模型 


4.人体关键点检测模型Android部署

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署。部署流程可分为四步:训练模型->将模型转换ONNX模型->将ONNX模型转换为TNN模型->Android端上部署TNN模型。

(1) 将Pytorch模型转换ONNX模型

训练好Pytorch模型后,我们需要先将模型转换为ONNX模型,以便后续模型部署。

  • 原始Python项目提供转换脚本,你只需要修改model_file和config_file为你模型路径即可
  •  convert_torch_to_onnx.py实现将Pytorch模型转换ONNX模型的脚本
python libs/convert_tools/convert_torch_to_onnx.py
"""
This code is used to convert the pytorch model into an onnx format model.
"""
import os
import torch.onnx
from pose.inference import PoseEstimation
from basetrainer.utils.converter import pytorch2onnx


def load_model(config_file, model_file, device="cuda:0"):
    pose = PoseEstimation(config_file, model_file, device=device)
    model = pose.model
    config = pose.config
    return model, config


def convert2onnx(config_file, model_file, device="cuda:0", onnx_type="kp"):
    """
    :param model_file:
    :param input_size:
    :param device:
    :param onnx_type:
    :return:
    """
    model, config = load_model(config_file, model_file, device=device)
    model = model.to(device)
    model.eval()
    model_name = os.path.basename(model_file)[:-len(".pth")]
    onnx_file = os.path.join(os.path.dirname(model_file), model_name + ".onnx")
    # dummy_input = torch.randn(1, 3, 240, 320).to("cuda")
    input_size = tuple(config.MODEL.IMAGE_SIZE)  # w,h
    input_shape = (1, 3, input_size[1], input_size[0])
    pytorch2onnx.convert2onnx(model,
                              input_shape=input_shape,
                              input_names=['input'],
                              output_names=['output'],
                              onnx_file=onnx_file,
                              opset_version=11)
    print(input_shape)


if __name__ == "__main__":
    config_file = "../../work_space/person/mobilenet_v2_17_192_256_custom_coco_20231124_090015_6639/mobilenetv2_192_192.yaml"
    model_file = "../../work_space/person/mobilenet_v2_17_192_256_custom_coco_20231124_090015_6639/model/best_model_158_0.6181.pth"
    convert2onnx(config_file, model_file)

(2) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署

TNN转换工具:

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_android_06


(3) Android端上部署模型

项目实现了Android版本的人体检测和人体关键点检测Demo,部署框架采用TNN,支持多线程CPU和GPU加速推理,在普通手机上可以实时处理。项目Android源码,核心算法均采用C++实现,上层通过JNI接口调用。

如果你想在这个Android Demo部署你自己训练的模型,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把TNN模型代替你模型即可。 

HRNet-w32参数量和计算量太大,不适合在Android手机部署,本项目Android版本只支持部署LiteHRNet和Mobilenet-v2模型;C++版本可支持部署HRNet-w32,LiteHRNet和Mobilenet-v2模型 

  • 这是项目Android源码JNI接口 ,Java部分
package com.cv.tnn.model;

import android.graphics.Bitmap;

public class Detector {

    static {
        System.loadLibrary("tnn_wrapper");
    }


    /***
     * 初始化检测模型
     * @param dets_model: 检测模型(不含后缀名)
     * @param pose_model: 识别模型(不含后缀名)
     * @param root:模型文件的根目录,放在assets文件夹下
     * @param model_type:模型类型
     * @param num_thread:开启线程数
     * @param useGPU:是否开启GPU进行加速
     */
    public static native void init(String dets_model, String pose_model, String root, int model_type, int num_thread, boolean useGPU);

    /***
     * 返回检测和识别结果
     * @param bitmap 图像(bitmap),ARGB_8888格式
     * @param score_thresh:置信度阈值
     * @param iou_thresh:  IOU阈值
     * @param pose_thresh:  关键点阈值
     * @return
     */
    public static native FrameInfo[] detect(Bitmap bitmap, float score_thresh, float iou_thresh, float pose_thresh);
}
  • 这是Android项目源码JNI接口 ,C++部分
#include <jni.h>
#include <string>
#include <fstream>
#include "src/yolov5.h"
#include "src/pose_detector.h"
#include "src/Types.h"
#include "debug.h"
#include "android_utils.h"
#include "opencv2/opencv.hpp"
#include "file_utils.h"

using namespace dl;
using namespace vision;

static YOLOv5 *detector = nullptr;
static PoseDetector *pose = nullptr;

JNIEXPORT jint JNI_OnLoad(JavaVM *vm, void *reserved) {
    return JNI_VERSION_1_6;
}

JNIEXPORT void JNI_OnUnload(JavaVM *vm, void *reserved) {

}


extern "C"
JNIEXPORT void JNICALL
Java_com_cv_tnn_model_Detector_init(JNIEnv *env,
                                    jclass clazz,
                                    jstring dets_model,
                                    jstring pose_model,
                                    jstring root,
                                    jint model_type,
                                    jint num_thread,
                                    jboolean use_gpu) {
    if (detector != nullptr) {
        delete detector;
        detector = nullptr;
    }
    std::string parent = env->GetStringUTFChars(root, 0);
    std::string dets_model_ = env->GetStringUTFChars(dets_model, 0);
    std::string pose_model_ = env->GetStringUTFChars(pose_model, 0);
    string dets_model_file = path_joint(parent, dets_model_ + ".tnnmodel");
    string dets_proto_file = path_joint(parent, dets_model_ + ".tnnproto");
    string pose_model_file = path_joint(parent, pose_model_ + ".tnnmodel");
    string pose_proto_file = path_joint(parent, pose_model_ + ".tnnproto");
    DeviceType device = use_gpu ? GPU : CPU;
    LOGW("parent     : %s", parent.c_str());
    LOGW("useGPU     : %d", use_gpu);
    LOGW("device_type: %d", device);
    LOGW("model_type : %d", model_type);
    LOGW("num_thread : %d", num_thread);
    YOLOv5Param model_param = YOLOv5s05_320;//模型参数
    detector = new YOLOv5(dets_model_file,
                          dets_proto_file,
                          model_param,
                          num_thread,
                          device);

    PoseParam pose_param = POSE_MODEL_TYPE[model_type];//模型类型
    pose = new PoseDetector(pose_model_file,
                            pose_proto_file,
                            pose_param,
                            num_thread,
                            device);
}

extern "C"
JNIEXPORT jobjectArray JNICALL
Java_com_cv_tnn_model_Detector_detect(JNIEnv *env, jclass clazz, jobject bitmap,
                                      jfloat score_thresh, jfloat iou_thresh, jfloat pose_thresh) {
    cv::Mat bgr;
    BitmapToMatrix(env, bitmap, bgr);
    int src_h = bgr.rows;
    int src_w = bgr.cols;
    // 检测区域为整张图片的大小
    FrameInfo resultInfo;
    // 开始检测
    if (detector != nullptr) {
        detector->detect(bgr, &resultInfo, score_thresh, iou_thresh);
    } else {
        ObjectInfo objectInfo;
        objectInfo.x1 = 0;
        objectInfo.y1 = 0;
        objectInfo.x2 = (float) src_w;
        objectInfo.y2 = (float) src_h;
        objectInfo.label = 0;
        resultInfo.info.push_back(objectInfo);
    }

    int nums = resultInfo.info.size();
    LOGW("object nums: %d\n", nums);
    if (nums > 0) {
        // 开始检测
        pose->detect(bgr, &resultInfo, pose_thresh);
        // 可视化代码
        //classifier->visualizeResult(bgr, &resultInfo);
    }
    //cv::cvtColor(bgr, bgr, cv::COLOR_BGR2RGB);
    //MatrixToBitmap(env, bgr, dst_bitmap);
    auto BoxInfo = env->FindClass("com/cv/tnn/model/FrameInfo");
    auto init_id = env->GetMethodID(BoxInfo, "<init>", "()V");
    auto box_id = env->GetMethodID(BoxInfo, "addBox", "(FFFFIF)V");
    auto ky_id = env->GetMethodID(BoxInfo, "addKeyPoint", "(FFF)V");
    jobjectArray ret = env->NewObjectArray(resultInfo.info.size(), BoxInfo, nullptr);
    for (int i = 0; i < nums; ++i) {
        auto info = resultInfo.info[i];
        env->PushLocalFrame(1);
        //jobject obj = env->AllocObject(BoxInfo);
        jobject obj = env->NewObject(BoxInfo, init_id);
        // set bbox
        //LOGW("rect:[%f,%f,%f,%f] label:%d,score:%f \n", info.rect.x,info.rect.y, info.rect.w, info.rect.h, 0, 1.0f);
        env->CallVoidMethod(obj, box_id, info.x1, info.y1, info.x2 - info.x1, info.y2 - info.y1,
                            info.label, info.score);
        // set keypoint
        for (const auto &kps : info.keypoints) {
            //LOGW("point:[%f,%f] score:%f \n", lm.point.x, lm.point.y, lm.score);
            env->CallVoidMethod(obj, ky_id, (float) kps.point.x, (float) kps.point.y,
                                (float) kps.score);
        }
        obj = env->PopLocalFrame(obj);
        env->SetObjectArrayElement(ret, i, obj);
    }
    return ret;
}

(4) Android测试效果 

Android Demo在普通手机CPU/GPU上可以达到实时检测效果;CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求。

Android版本的人体关键点检测APP Demo体验:

Android人体关键点检测APP Demo体验(下载):

 

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_人体骨骼点检测_02

  

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_android_03

(5) 运行APP闪退:dlopen failed: library "libomp.so" not found

参考解决方法:
解决dlopen failed: library “libomp.so“ not found_PKing666666的博客

 Android SDK和NDK相关版本信息,请参考: 

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_android_09

 

人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测_人体骨骼点检测_10


5.Android项目源码下载

Android项目源码下载地址:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测

Android人体关键点检测APP Demo体验(下载):

整套Android项目源码内容包含:

  1. Android Demo源码支持YOLOv5人体检测
  2. Android Demo源码支持轻量化模型LiteHRNet和Mobilenet-v2人体关键点检测(人体姿态估计)
  3. Android Demo在普通手机CPU/GPU上可以实时检测,CPU约50ms,GPU约30ms左右
  4. Android Demo支持图片,视频,摄像头测试
  5. 所有依赖库都已经配置好,可直接build运行,若运行出现闪退,请参考dlopen failed: library “libomp.so“ not found 解决。

6.C++实现人体关键点检测

  •  人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 


标签:检测,模型,model,关键点,Android,人体
From: https://blog.51cto.com/u_15764210/9014692

相关文章

  • 手部关键点检测1:手部关键点(手部姿势估计)数据集(含下载链接)
    手部关键点检测1:手部关键点(手部姿势估计)数据集(含下载链接)目录手部关键点检测1:手部关键点(手部姿势估计)数据集(含下载链接)1.前言2.手部检测数据集:(1)Hand-voc1(2)Hand-voc2(3)Hand-voc3 (4)手部目标框可视化效果 3.手部关键点数据集(1)HandPose-v1(2)HandPose-v2(3)HandPose-v3(4)手部关......
  • Vue检测密码复杂度方法
    Vue检测密码复杂度方法<!--检测密码复杂度方法--><template><div><inputtype="password"v-model="password"@input="checkPasswordComplexity"><divv-if="complexityMessage">{{complexityMessa......
  • 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测OpenCV库使
    人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码可实时检测目录人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码可实时检测1.项目介绍2.人体关键点检测方法(1)Top-Down(自上而下)方法(2)Bottom-Up(自下而上)方法:3.人体关键点检测模型(1)人体关键点检测......
  • 人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码
    人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码目录人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码1.前言2.人体关键点检测方法(1)Top-Down(自上而下)方法(2)Bottom-Up(自下而上)方法:3.人体关键点检测数据集4.人体检测模型训练5.人体关键......
  • 人体关键点检测1:人体姿势估计数据集
    人体关键点检测1:人体姿势估计数据集目录人体关键点检测1:人体姿势估计数据集1.人体姿态估计2.人体姿势估计数据集(1)COCO数据集(2)MPII数据集(3)Human3.6M(4)关键点示意图1.人体姿态估计人体关键点检测(HumanKeypointsDetection)又称为人体姿态估计2DPose,是计算机视觉中一个相对基础的任务,......
  • 笔尖笔帽检测2:Pytorch实现笔尖笔帽检测算法(含训练代码和数据集)
    笔尖笔帽检测2:Pytorch实现笔尖笔帽检测算法(含训练代码和数据集)目录笔尖笔帽检测2:Pytorch实现笔尖笔帽检测算法(含训练代码和数据集)1.前言2.笔尖笔帽检测方法(1)Top-Down(自上而下)方法(2)Bottom-Up(自下而上)方法:3.笔尖笔帽检测数据集4.手笔检测模型训练5.笔尖笔帽检测模型训练......
  • 手部关键点检测5:C++实现手部关键点检测(手部姿势估计)含源码 可实时检测OpenCV库使用o
    手部关键点检测5:C++实现手部关键点检测(手部姿势估计)含源码可实时检测目录手部关键点检测4:C++实现手部关键点检测(手部姿势估计)含源码可实时检测1.项目介绍2.手部关键点检测(手部姿势估计)方法(1)Top-Down(自上而下)方法(2)Bottom-Up(自下而上)方法:3.手部关键点检测模型(1)手部......
  • 手部关键点检测4:Android实现手部关键点检测(手部姿势估计)含源码 可实时检测
    目录1.前言2.手部关键点检测(手部姿势估计)方法(1)Top-Down(自上而下)方法(2)Bottom-Up(自下而上)方法:3.手部关键点检测模型训练4.手部关键点检测模型Android部署(1)将Pytorch模型转换ONNX模型(2)将ONNX模型转换为TNN模型(3)Android端上部署模型(4)Android测试效果 (5)运行APP闪退:dlop......
  • 人工智能生成文本检测在实践中使用有效性探讨
    人工智能辅助撰写文章的技术现在无处不在!ChatGPT已经解锁了许多基于语言的人工智能应用程序,人工智能在任何类型的内容生成中的使用都已经达到了以前前所未有的高度。在诸如创意写作之类的工作中,人们被要求创造自己的内容。但是由于人工智能在这些任务中的普及和有效性,很人工智能......
  • 十六、AI运动识别中,如何判断人体站位?
    【云智AI运动识别小程序插件】,可以为您的小程序,赋于人体检测识别、运动检测识别、姿态识别检测AI能力。本地原生识别引擎,无需依赖任何后台或第三方服务,有着识别速度快、体验佳、扩展性强、集成快、成本低的特点,本篇实现需要使用此插件,请先行在微信服务市场或官网了解详情。一、......