今天通过自主学习,,对数据结构中的迪杰斯特拉方法实现最短路径进行了深造,让我学会了很多新的东西。
首先是问题描述:
用迪杰斯特拉算法实现有向网的最短路径
输入格式:
第一行输入有向网的顶点和边数,第二行输入各顶点值,用空格间隔,第三行开始输入各条边的 两个点的及边上的权值,用空格间隔。最后一行输入要求路径的两个顶点。
输出格式:
输出最短路径经过的各顶点,中间用-->连接。
以下是我解题思路:(c++)
#include <iostream> #include <limits.h> #include <string> #include <vector> #include <iomanip> using namespace std; #define MAX_VERTEX_NUM 20 struct Graph { int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; string vexs[MAX_VERTEX_NUM]; int vexnum, arcnum; }; int LocateVex(Graph G, string v) { for (int i = 0; i < G.vexnum; i++) { if (G.vexs[i] == v) { return i; } } return -1; } void CreateGraph(Graph *G) { //cout << "请输入顶点数和弧数: " << endl; cin >> G->vexnum >> G->arcnum; //cout << "请输入顶点: " << endl; for (int i = 0; i < G->vexnum; i++) { cin >> G->vexs[i]; G->arcs[i][i] = 0; } for (int i = 0; i < G->vexnum; i++) { for (int j = 0; j < G->vexnum; j++) { if (i != j) { G->arcs[i][j] = INT_MAX; } } } for (int i = 0; i < G->arcnum; i++) { //cout << "请输入边的两个顶点, from v1 to v2: " << endl; string v1, v2; cin >> v1 >> v2; int i1 = LocateVex(*G, v1); int i2 = LocateVex(*G, v2); //cout << "请输入弧的权值: " << endl; cin >> G->arcs[i1][i2]; } } int ShortestPath_DIJ(Graph G) { //cout << "请输入想查询到其他点最短距离的起点: " << endl; string s0; string s1; cin >> s0; cin >> s1; int v0 = LocateVex(G, s0); int v1 = LocateVex(G, s1); const int num = G.vexnum; int flag_1=0; int flag_2=0; /*for (int i = 0; i < num; i++) { //cout<<G.vexs[i]<<endl; if (s0==G.vexs[i]) { flag_1=1; } if (s1==G.vexs[i]) { flag_2=1; } if((flag_1!=flag_2)||(flag_1==0&&flag_2==0)){ cout << "error" << endl; return -1; } }*/ vector<int> path[num]; int ShortPathTable[num]; bool final[num]; for (int i = 0; i < G.vexnum; i++) { final[i] = false; ShortPathTable[i] = G.arcs[v0][i]; if (ShortPathTable[i] < INT_MAX) { path[i].push_back(v0); path[i].push_back(i); } } ShortPathTable[v0] = 0; final[v0] = true; for (int i = 1; i < G.vexnum; i++) { int min = INT_MAX; int v = 0; for (int w = 0; w < G.vexnum; w++) { if (!final[w]) { if (ShortPathTable[w] < min) { min = ShortPathTable[w]; v = w; } } } final[v] = true; for (int w = 0; w < G.vexnum; w++) { if (!final[w] && G.arcs[v][w] < INT_MAX && min + G.arcs[v][w] < ShortPathTable[w]) { ShortPathTable[w] = min + G.arcs[v][w]; path[w].clear(); path[w] = path[v]; path[w].push_back(w); } } } //for (int i = 0; i < num; i++) { int i=v1; if (i != v0) { // cout<<1<<endl; if (ShortPathTable[i] == INT_MAX) { cout << "从源点" << G.vexs[v0] << "到终点" << G.vexs[i] << "不可达!" << endl; } else { //cout << "从源点" << G.vexs[v0] << "到终点" << G.vexs[i] << "的最短路径: " << endl; cout << G.vexs[path[i][0]]; for (int j = 1; j < path[i].size(); j++) { // if(j==v1) cout << "-->" << G.vexs[path[i][j]]; } cout << endl; //cout << "其最短长度为: " << endl; //cout << ShortPathTable[i] << endl; } //cout << "----------------------------------" << endl; } } return 1; } int main () { Graph G; CreateGraph(&G); ShortestPath_DIJ(G); return 0; }
标签:vexnum,ShortPathTable,int,MAX,arcs,迪杰,c++,++,12.11 From: https://www.cnblogs.com/tianpeisen/p/17897387.html