首页 > 编程语言 >数据分享|WEKA关联规则挖掘Apriori算法在学生就业数据中的应用

数据分享|WEKA关联规则挖掘Apriori算法在学生就业数据中的应用

时间:2023-11-14 23:57:18浏览次数:34  
标签:就业 WEKA Apriori 学生 算法 关联 数据

全文链接:https://tecdat.cn/?p=34254

原文出处:拓端数据部落公众号

关联规则挖掘作为数据挖掘的一个重要分支,对于发现数据之间的潜在关联和规律具有重要意义。在教育领域,学生就业数据是一类重要的数据资源,通过关联规则挖掘可以揭示学生就业相关的规律和影响因素。本文旨在探讨WEKA关联规则挖掘Apriori算法在学生就业数据中的应用,以期为提高学生就业率和优化学生培养方案提供参考。

本文首先介绍了关联规则挖掘的基本概念和方法,包括Apriori算法的原理、优势和适用场景。接着,本文详细阐述了WEKA数据挖掘软件的功能和特点,以及如何利用WEKA实现Apriori算法在学生就业数据中的具体应用。通过实验和分析,本文发现Apriori算法可以有效地发现学生就业数据中的关联规则,揭示学生就业相关的规律和影响因素。

本文的研究成果不仅有助于提高学生就业率和优化学生培养方案,还可以为教育管理部门提供科学依据和决策支持。同时,本文的研究方法也可以为其他领域的数据挖掘应用提供参考和借鉴。

Weka

Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。

image.png

数据

数据使用的是学生数据 。

部分数据如下图所示:

image.png

数据建模

数据预处理

image.png

指标选取

本次分析一共选取了13个指标427个样本,分别是:

              毕业年份

              性别

              生源所在地

              政治面貌

              民族

              实习经历

              平均成绩   

              平均学分绩    

              加权学分成绩     

              名次 

              毕业去向

              就业形式

              单位所在地。

数据审核

QQ截图20231113145518.png

由上表,可得:本次分析的数据都是有效的,不存在缺失值。

描述性统计量

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

image.png

由上表,可得各个变量的均值、中值、最大值和最小值。可以看出这8个连续性变量不存在量纲上的差异,因此在后面的分析中,不需要进行标准化处理。

数据预处理:

image.png

在进行关联规则挖掘之前,首先对属性进行离散化处理,将数值型变量转化成分类变量。

模型的实际应用

研究数据说明

  本文分别用Apriori算法对数据进行处理挖掘,具体结果如下所示。

(1)Apriori算法

 虽然 Apriori 算法可以直接挖掘生成表中的交易数据集,但是为了关联挖掘其他算法的需要先把交易数据集转换成分析数据集,构建的算法设置图如图 1 所示。

参数设置

通过格式转换, 设最低条件支持度为15%,最小规则置信度为30%,最大前项数为5,选择专家模式,挖掘出最有价值的10条关联规则,如图 2 所示。生成的10条规则如下所示:

image.png

image.png

分析及建议: 通过图可以清晰的看到有实习经历的汉族学生有较大的概率获得就业协议。说明实习经历是影响学生是否就业的重要因素。同时,可以看到签订就业协议的学生大多数的毕业去向是派遣。 从政治面貌来看,为共青团员的学生具有更大的概率能签订就业协议。从性别来看,大部分强关联规则中出现的性别为男,因此,男性有更大的概率去签订就业协议。

结论

利用WEKA软件,通过分析频繁项集及关联规则生成的过程,采用Apriori算法对数据分别进行了解析挖掘,针对挖掘结果提出了相应的建议,对学生的就业准备和就业策略有着一定的现实的意义。

标签:就业,WEKA,Apriori,学生,算法,关联,数据
From: https://www.cnblogs.com/tecdat/p/17832880.html

相关文章

  • 【专题】2023食品行业营销数智化洞察报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34250原文出处:拓端数据部落公众号近日,一份《2023食品行业营销数智化洞察报告合集》发布,该报告从多个角度对市场、行业、企业进行了数据分析,并预测了2023年营销走势及增长点。阅读原文,获取专题报告合集全文,解锁文末140份食品营销数智化相关行业研究......
  • 【专题】2023年中国汽车出海研究报告PDF合集分享(附原数据表)
    原文链接:https://tecdat.cn/?p=34260原文出处:拓端数据部落公众号近年来,我国汽车出口需求旺盛,并保持强劲增长趋势,至2023年一季度,汽车出口总量首超日本,中国汽车“破浪出海”正当时。本报告合集旨在通过梳理中国汽车的出海背景,分析汽车厂商出海的现状及特点,洞察中国汽车出海的风险......
  • 【视频】广义相加模型(GAM)在电力负荷预测中的应用|附代码数据
    全文下载链接:http://tecdat.cn/?p=9024最近我们被客户要求撰写关于广义相加模型(GAM)的研究报告,包括一些图形和统计输出。这篇文章探讨了为什么使用广义相加模型 是一个不错的选择。为此,我们首先需要看一下线性回归,看看为什么在某些情况下它可能不是最佳选择。回归模型假设我们......
  • R语言多元Copula GARCH 模型时间序列预测|附代码数据
    原文链接  http://tecdat.cn/?p=2623原文出处:拓端数据部落公众号 最近我们被要求撰写关于CopulaGARCH的研究报告,包括一些图形和统计输出。和宏观经济数据不同,金融市场上多为高频数据,比如股票收益率序列。直观的来说,后者是比前者“波动”更多且随机波动的序列,在一元或多元......
  • Redis数据结构之动态字符串SDS
    动态字符串SDS我们都知道Redis中保存的Key是字符串,value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。不过Redis没有直接使用C语言中的字符串,因为C语言字符串存在很多问题:V获取字符串长度的需要通过运算V非二进制安全V不可修改Redis构建了一种新的字......
  • 解惑一:关于mov指令后面的数据是十进制还是十六进制?AL当中的进位是否影响AH?
    Part1在看《汇编语言》的时候,书上写了差不多这样意思的一段话(我用自己的话概述一下):当指令使用了寄存器AL或者AH,这条指令会认为AL和AH是两个不相关的寄存器,此时AL是作为一个独立的八位寄存器。不要错误地认为,诸如addal,85H  addal,93H的指令产生的进位会存储在AH......
  • 查看SQL Server 数据库文件存放位置
    SELECTname,physical_name,DB_NAME(database_id),data_space_idASCurrentLocation  FROMsys.master_filesSELECTname,physical_name,DB_NAME(database_id),data_space_idASCurrentLocation  FROMsys.master_filesWHEREdatabase_id=DB_ID('YourDatabaseName&......
  • 高斯数据库HCNA之权限控制
    一、用户权限控制1、用户、角色、权限1.1、权限权限是什么执行某些特定SQL语句的能力以及访问或维护某一特定对象的能力权限的类型系统权限作用:用户可以执行一类特定的SQL语句例如:用户A想要连接数据库,则用户A需要有CREATESESSION系统权限对象权限作用:用户可以访问或维护某......
  • MySQL 导出表结构(含列名、数据类型、字段备注注释)导出成Excel
    SELECTCOLUMN_NAME列名,COLUMN_COMMENT名称,column_key主键,--COLUMN_TYPE数据类型,DATA_TYPE字段类型,CHARACTER_MAXIMUM_LENGTH长度,IS_NULLABLE是否必填,--COLUMN_DEFAULT描述FROMINFORMATION_SCHEMA.COLUMNSwhere--developer......
  • 数据库操作入门:PyMongo 和 MongoDB 的基本用法
    MongoDBMongoDB是一种流行的NoSQL数据库,它将数据存储在类似JSON的文档中,使数据库非常灵活和可扩展PyMongoPython需要一个MongoDB驱动程序来访问MongoDB数据库。在本教程中,我们将使用MongoDB驱动程序"PyMongo"。建议使用PIP来安装"PyMongo",确保您的Python环境已安装PIP。在命......