首页 > 编程语言 >md5算法实现

md5算法实现

时间:2023-10-23 23:46:10浏览次数:40  
标签:字节 16 实现 算法 64 result 计算 data md5

前言

md5算法是我们经常会用到的一个hash函数, 虽然已经被证明是不安全的了, 但其应用依然十分广泛.

哈希函数具有如下特点:

  1. 将任意长度的字符串映射为固定长度
  2. 源数据微小的改动会导致结果差异巨大
  3. 不可逆
  4. 暴力破解困难

你有没有好奇过, 哈希函数是如何做到这些的呢? 本文就拿md5举例, 看一看它具体的计算过程.

注意: 本文仅设计计算过程, 不涉及证明过程. 也就是说只介绍How, 不介绍Why , 满足一下好奇心即可

计算过程

不管是文件还是字符串, 在计算时都是一个byte数组, 因此无需进行区分.

md5的计算过程大致分为如下几步(看起来稍稍费点脑子)

1. 进行数据填充

首先将准备计算的数据准备好, 步骤如下:

  1. 在数据后面拼接一个 int64 类型的数据, 这个数据是源数据的位长度
  2. 源数据与长度中间填充数据 100... , 使得填充后的长度是 64(字节) 的倍数
    • 填充的数据最短为 1 个字节, 最长为 64 个字节

这里以字符串hello举例, 其16进制表示为: 68656c6c6f

  1. 其共有40位, 也就是16进制的28. 因为是 int64 类型, 因此共8字节, 以小端序表示为: 2800000000000000
  2. 源数据5字节, 算上长度的8字节共13字节, 因此填充数据的长度为64-13=51

填充后的数据为: 68656c6c6f8000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002800000000000000

共64字节.

2. 对数据进行分组计算并迭代

到这一步就是重头戏了, 主要计算逻辑全部都在这里, 认真看咯.

首先, 我们知道, md5的计算结果是一个32位的16进制数字, 也就是16个字节. 我们将这16个字节分成4组, 每组4个字节也就是一个int类型的数字.

假设这4个数字分别为a, b, c, d, 我们所有的计算结果, 都是对这4个数字进行的.

image-20231023221702209

将上一步拼装好的数据, 按照每64字节进行拆分

image-20231023222214355

针对每一组进行迭代计算, 其中每组的计算过程大致如下:

  1. 进行4组不同的计算规则, 每组规则计算16次. 共16*4轮迭代计算
  2. 每组计算中, 以a, d, c, b的顺序, 依次迭代每个数字(计算规则不同)

以第一组第一次迭代为例:

image-20231023223934267

  • n的计算规则为: (b & c) | (!b & d)
    • 每组迭代计算规则不同:
      • 第二组: (b & d) | (c & !d)
      • 第三组: b ^ c ^ d
      • 第四组: c ^ (b | !d)
  • m的计算规则为: n + data[i] + a + sin(i+1)*2^32
    • 其中, data[i]为取原数据的第i个数字 (原数据64个字节, 可转为16个 int)
      • 第一组: i
      • 第二组: (5i+1)%16
      • 第三组: (3i+5)%16
      • 第四组: 7i % 16
  • o 的计算规则为: (m << calcNum[i%4]) | (m >> (32 - calcNum[i%4]))
    • 其中calcNum 是一组魔数, 每组不同
  • num 的计算规则为: o+b
  • 最终, 将num赋值给a, 完成本次计算. (本次计算的结果为下一次迭代计算的输入)

而这, 仅仅是64次迭代中的一次, 还要进行64次, 才会完成对这64个字节的计算. (剩余的迭代计算规则不再赘述, 具体可查看下面的代码实现)

最后, 当对这64个字节迭代计算完成后, 依次对数据后面所有组进行相同的迭代, 知道所有源数据计算完成.

3. 输出结果

上一步计算完成后, 我们将得到4个经过很多次迭代的int数字. 而这4个数字, 就是我们计算的结果了, 我们只需要简单的将其转为16进制输出即可. (以上所有的数字与字节的转换, 均按照小端序进行)

code

希望到这里, 你没有看的云里雾里, 当然了, 我也知道自己没怎么写明白...

下面是我用Go实现的一版md5算法, 一共才100行左右. 算法的细节都在里面了, 你可以查看代码分析其具体计算流程, 也可以拿到本地跑一下, 或者依据此Go版本实现, 用其他编程语言试着实现一版.

package main

import (
	"encoding/binary"
	"encoding/hex"
	"fmt"
	"math"
)

func main() {
	fmt.Println(md5("hello"))
}

func md5(str string) string {
	// 填充数据
	data := md5GetPaddingData(str)
	// 过程计算结果 (不要问我为什么是这4个数字, 我也不知道, 就是魔数. 应该是推导出这些魔术的碰撞率比较低)
	result := [4]uint32{0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476}
	// 遍历所有分组
	for i := 0; i < len(data); i += 64 {
		// 计算当前分组的结果
		tmpGroup := md5CalcGroup(result, data[i:i+64])
		for j := 0; j < 4; j++ { // 将结果加到 result 上
			result[j] += tmpGroup[j]
		}
	}
	// 输出结果并将结果转为 16 进制
	md5Byte := make([]byte, 0)
	for _, num := range result {
		md5Byte = binary.LittleEndian.AppendUint32(md5Byte, num)
	}
	return hex.EncodeToString(md5Byte)
}

// 对 md5 计算的数据进行填充
func md5GetPaddingData(str string) []byte {
	data := []byte(str)
	// 计算数据长度 (byte 单位, 所以要乘以 8)
	var lenBuf = make([]byte, 8)
	binary.LittleEndian.PutUint64(lenBuf, uint64(len(data)*8))
	// 计算填充长度
	paddingLen := 64 - (len(data)+len(lenBuf))%64
	// 填充 1 和 0
	data = append(data, 0x80)
	for i := 0; i < paddingLen-1; i++ {
		data = append(data, 0x00)
	}
	// 在最后拼接长度
	data = append(data, lenBuf...)
	return data
}

// 对每组数据进行计算
func md5CalcGroup(lastResult [4]uint32, data []byte) [4]uint32 {
	if len(data) != 64 {
		panic("data length must be 64")
	}
	// 将 result 数组临时复制一份, 防止函数内部修改
	result := [4]uint32{}
	for i, num := range lastResult {
		result[i] = num
	}
	// 计算常量表
	constTable := [64]uint32{}
	for i := 0; i < 64; i++ {
		// sin(i+1) * 2^32
		constTable[i] = uint32(math.Abs(math.Sin(float64(i+1))) * (1 << 32))
	}
	// 将当前分组按照 4 字节一组, 分为 4 组. 并将其转为整形方便后续运算
	calcData := [16]uint32{}
	for i := 0; i < 16; i++ {
		calcData[i] = binary.LittleEndian.Uint32(data[i*4 : i*4+4])
	}

	// 供下面每轮计算使用
	// 获取本轮计算用到的4个结果数 (顺序返回, 0,3,2,1,0,3,2,1,0...)
	// 以及更新的结果数下标
	gotResIndex := func(i int) (uint32, uint32, uint32, uint32, int) {
		resIndex := 4 - i%4
		if resIndex >= 4 {
			resIndex = 0
		}
		return result[resIndex], result[(resIndex+1)%4], result[(resIndex+2)%4], result[(resIndex+3)%4], resIndex
	}
	// 进行第一轮计算
	calcNum := [4]uint32{7, 12, 17, 22} // 同理这4个魔数我也不知道为什么
	for i := 0; i < 16; i++ {
		// 本轮计算的结果数
		a, b, c, d, resIndex := gotResIndex(i)
		n := (b & c) | (^b & d)
		m := n + calcData[i] + constTable[i] + a
		o := (m << calcNum[i%4]) | (m >> (32 - calcNum[i%4]))
		result[resIndex] = o + b
	}
	// 第二轮计算
	calcNum = [4]uint32{5, 9, 14, 20} // 同理这4个魔数我也不知道为什么
	for i := 0; i < 16; i++ {
		a, b, c, d, resIndex := gotResIndex(i)
		n := (b & d) | (c & ^d)
		m := n + calcData[(5*i+1)%16] + constTable[i+16] + a
		o := (m << calcNum[i%4]) | (m >> (32 - calcNum[i%4]))
		result[resIndex] = o + b
	}
	// 第三轮计算
	calcNum = [4]uint32{4, 11, 16, 23} // 同理这4个魔数我也不知道为什么
	for i := 0; i < 16; i++ {
		a, b, c, d, resIndex := gotResIndex(i)
		n := b ^ c ^ d
		m := n + calcData[(3*i+5)%16] + constTable[i+32] + a
		o := (m << calcNum[i%4]) | (m >> (32 - calcNum[i%4]))
		result[resIndex] = o + b
	}
	// 第四轮计算
	calcNum = [4]uint32{6, 10, 15, 21} // 同理这4个魔数我也不知道为什么
	for i := 0; i < 16; i++ {
		a, b, c, d, resIndex := gotResIndex(i)
		n := c ^ (b | ^d)
		m := n + calcData[(7*i)%16] + constTable[i+48] + a
		o := (m << calcNum[i%4]) | (m >> (32 - calcNum[i%4]))
		result[resIndex] = o + b
	}
	return result
}

以上, 就是md5值计算的全部过程了, 不需要证明, 仅仅好奇. 具体做的时候没有人会闲到自己实现md5算法, 所有语言都带着常用的hash函数实现.

原文地址: https://hujingnb.com/archives/912

标签:字节,16,实现,算法,64,result,计算,data,md5
From: https://www.cnblogs.com/hujingnb/p/17783767.html

相关文章

  • 学习蓝图+行为树实现AI角色的跟随操作
    跟随B站视频学习准备工作一个角色蓝图类用来设置AI角色,一个Blackboard--AI的大脑,一个AITree--AI的行为控制,一个AIController蓝图类--定义AI的控制器。是否发现角色首先需要在Blackboard中定义Bool变量是否发现角色。然后在AIController中设置IsSeePlayer。在AIController中......
  • 多态的使用以及多态底层的实现(下)
    经过之前的学习我们知道了,继承能够实现多态的原理就是,在继承的父类和子类中各自存在一个虚表,父类和子类的虚表中各自储存了自己的虚函数,不同的点就是如果我们完成了虚函数的重写,那么子类(派生类)虚表中的那个虚函数地址是重写后的虚函数的地址。所以我们虚函数重写还有一个名字就是虚......
  • Nginx实现内外网穿透
    声明:以下内容均收集与互联网,无法保证绝对可用性,请结合自身情况调整验证。随着网络安全的要求逐步提高,部分应用服务要求部署在内网,但是应用中有需要访问到公网服务,比如发票验真、OCR识别等,可以通过部署在DMZ区的Nginx实现。假设公网API服务地址为:https://api.myserver.com/ocr......
  • 二值信号量实现互斥锁的功能
    信号量Semaphore的值可以理解为是可用资源的数量,当Semaphore=1的时候表明可用资源数为1,这和互斥锁中每次只能有一个进行可以访问临界区是一个意思,所以当Semaphore=1的信号量也可以用来实现互斥锁信号量的PV操作,和互斥锁的lock和unlock操作基本类似。只不过设置状态变成了s--......
  • 记录--vue3 + mark.js | 实现文字标注功能
    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助页面效果具体实现新增1、监听鼠标抬起事件,通过window.getSelection()方法获取鼠标用户选择的文本范围或光标的当前位置。2、通过选中的文字长度是否大于0或window.getSelection().isCollapsed(返回一个布......
  • Oracle中通过组内排序实现行转列(三)
    1纵表平铺1.1原数据 1.2平铺结果:每个班级按照年龄从小到大平铺为一行select*from(selectrt.class,row_number()over(partitionbyrt.classorderbyrt.age)row_num,rt.sno,rt.snamefromrank_tes......
  • diff算法
    什么是Diff算法?Diff算法是Vue.js的一个核心特性,它是一种用于比较虚拟DOM树的差异,并最小化DOM操作的数量。当Vue.js检测到数据更改时,它会生成一个新的虚拟DOM树,并将其与旧虚拟DOM树进行比较。Diff算法会查找差异,并仅对需要更改的部分进行DOM操作。这种算法可以帮助我们在前端开发中......
  • 算法笔记(3)模拟退火
    原发表于个人博客=模拟退火的引入假如我们有一个函数,要求它的极大值,怎么求呢?如果这个函数满足单调性,可以用二分的方法。如果这是一个单谷(或单峰)函数,可以用三分法。那要是多峰函数怎么半呢?这时就可以用随机化算法。一种朴素的方法是:每次在当前找到的最优方案\(x\)附近寻找一......
  • 算法笔记(4)莫队算法入门
    原发表于我的博客前言本来想学完回滚莫队、树上莫队、二离莫队之后一起写一个博客,但是一直学不会/kk,只好把已会的普通莫队和带修莫队写了(以后会补上的)普通莫队莫队——优雅的暴力莫队算法的引入例题:给定一个数列和若干询问,每次询问询问一段区间内不同种类数字的个数。暴力......
  • 算法笔记(5)贪心算法
    原发表于我的博客贪心算法贪心与其说是一种算法,不如说一种思想。贪心思想,顾名思义,就是总是做出当前最好的选择,这种方式可能在全局上不是最好的结果,但是在一些题目中就可以直接用。最简单的例子就是“货比三家”,在生活中,我们买东西时都会挑性价比最优的,这就是一种贪心。贪心算......