预备知识:
- 完全二叉树可以用数组表示:
- 从下标0开始存储数据:
左子节点 = 2 * 父节点 + 1
,右子节点 = 2 * 父节点 + 2
; - 从下标1开始存储数据:
左子结点 = 2 * 父节点
,右子节点= 2 * 父节点 + 1
;
- 从下标0开始存储数据:
- 堆:
- 大根堆:父节点的值大于等于左右子节点的值;
- 小根堆:父节点的值小于等于左右子节点的值;
【注】看不懂的没必要往下了~
示例:大根堆的实现
C++实现:(实际上就是C++中的优先队列容器)
#include <bits/stdc++.h>
using namespace std;
namespace chasemeng {
template<typename T>
class priority_queue {
public:
// 插入元素:添加到树的末尾,然后上浮
void push(T& val) {
_tree.push_back(val);
// === 上浮 ===
int son = size() - 1;
// 遍历父节点
for (int i = (son - 1) / 2; i >= 0; i = (i - 1) / 2) {
if (_tree[son] <= _tree[i]) {
break;
}
swap(_tree[son], _tree[i]);
son = i;
}
}
// 弹出堆顶元素:将最后一个元素置换到堆顶,然后下沉该元素
void pop() {
swap(_tree.front(), _tree.back());
_tree.pop_back();
if (_tree.empty()) {
return;
}
// 调整元素
int left = 0, right = size() - 1;
int parent = left;
// 遍历子节点
for (int i = 2 * left + 1; i <= right; i = 2 * i + 1) {
if (i < right && _tree[i] < _tree[i + 1]) {
++i;
}
if (_tree[parent] >= _tree[i]) {
break;
}
swap(_tree[parent], _tree[i]);
parent = i;
}
}
// 获取堆顶元素
T top() {
if (this->size() <= 0) {
cout << "完蛋了" << endl;
throw "完蛋了";
}
return _tree.front();
}
// 是否为空
bool empty() {return _tree.empty();}
// 获取元素个数
int size() {return _tree.size();}
private:
vector<T> _tree;
};
}
【注】小根堆的实现基本不用怎么改动,自己思考一下即可。
测试
int main() {
srand((unsigned)time(NULL));
chasemeng::priority_queue<int> pque;
for (int i = 0; i < 20; ++i) {
int num = rand() % 100;
cout << num << " \n"[i == 20 - 1];
pque.push(num);
}
while (!pque.empty()) {
cout << pque.top() << " ";
pque.pop();
}
return 0;
}
结果:
执行完成,耗时:0 ms
76 31 86 80 69 7 71 31 28 95 84 97 63 56 24 59 71 86 97 40
97 97 95 86 86 84 80 76 71 71 69 63 59 56 40 31 31 28 24 7
完整代码
#include <bits/stdc++.h>
using namespace std;
namespace chasemeng {
template<typename T>
class priority_queue {
public:
// 插入元素:添加到树的末尾,然后上浮
void push(T& val) {
_tree.push_back(val);
// === 上浮 ===
int son = size() - 1;
// 遍历父节点
for (int i = (son - 1) / 2; i >= 0; i = (i - 1) / 2) {
if (_tree[son] <= _tree[i]) {
break;
}
swap(_tree[son], _tree[i]);
son = i;
}
}
// 弹出堆顶元素:将最后一个元素置换到堆顶,然后下沉该元素
void pop() {
swap(_tree.front(), _tree.back());
_tree.pop_back();
if (_tree.empty()) {
return;
}
// 调整元素
int left = 0, right = size() - 1;
int parent = left;
// 遍历子节点
for (int i = 2 * left + 1; i <= right; i = 2 * i + 1) {
if (i < right && _tree[i] < _tree[i + 1]) {
++i;
}
if (_tree[parent] >= _tree[i]) {
break;
}
swap(_tree[parent], _tree[i]);
parent = i;
}
}
// 获取堆顶元素
T top() {
if (this->size() <= 0) {
cout << "完蛋了" << endl;
throw "完蛋了";
}
return _tree.front();
}
// 是否为空
bool empty() {return _tree.empty();}
// 获取元素个数
int size() {return _tree.size();}
private:
vector<T> _tree;
};
}
int main() {
srand((unsigned)time(NULL));
chasemeng::priority_queue<int> pque;
for (int i = 0; i < 20; ++i) {
int num = rand() % 100;
cout << num << " \n"[i == 20 - 1];
pque.push(num);
}
while (!pque.empty()) {
cout << pque.top() << " ";
pque.pop();
}
return 0;
}
【注】自己测试没有问题,如果有bug,请反馈一下~
标签:parent,队列,tree,son,int,算法,数据结构,86,节点 From: https://www.cnblogs.com/chasemeng/p/17740297.html