首页 > 编程语言 >文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题

时间:2023-09-24 18:08:45浏览次数:44  
标签:arr return -- 元素 中位数 int 算法 VS 文心

五、用go语言,假设你已经有了一个最坏情况下是线性时间的用于求解中位数的“黑箱”子程序。设计一个能在线性时间内解决任意顺序统计量的选择问题算法。

文心一言:

为了在线性时间内解决任意顺序统计量的选择问题,我们可以使用一个基于快速选择算法的方法。快速选择算法是基于快速排序的思想,可以在平均情况下以线性时间复杂度找到第k小的元素。

假设我们有一个函数median(),它可以在最坏情况下以线性时间复杂度找到一个集合的中位数。我们可以使用这个函数来设计一个求解任意顺序统计量的选择问题的算法。

以下是一个用Go语言实现的示例代码:

// 定义一个结构体来表示一个子数组  
type SubArray struct {  
    start, end int  
}  
  
// 快速选择算法  
func quickSelect(arr []int, k int) int {  
    if len(arr) == 1 {  
        return arr[0]  
    }  
  
    // 将数组划分为两个部分,一个部分包含小于中位数的元素,另一个部分包含大于等于中位数的元素  
    median := median(arr)  
    i := 0  
    j := len(arr) - 1  
  
    for i <= j {  
        if arr[i] < median {  
            i++  
        } else if arr[j] >= median {  
            j--  
        } else {  
            arr[i], arr[j] = arr[j], arr[i]  
            i++  
            j--  
        }  
    }  
  
    // 根据中位数的位置与k的关系,确定下一步要在哪个子数组中查找第k小的元素  
    if k <= i {  
        return quickSelect(arr[:i+1], k)  
    } else if k > i+1 {  
        return quickSelect(arr[i+1:], k-i-1)  
    } else {  
        return median  
    }  
}  
  
// 求解任意顺序统计量的选择问题算法  
func selectOrderStatistic(arr []int, k int) int {  
    return quickSelect(arr, k-1) // 注意这里传入的是k-1,因为数组索引从0开始计数,而我们要找的是第k小的元素,不是第k个元素。  
}

这个算法使用快速选择的思想,通过不断划分数组,将问题规模缩小到线性时间复杂度内。在每次划分中,我们使用median()函数找到当前数组的中位数,并根据中位数的位置与k的关系,确定下一步要在哪个子数组中查找第k小的元素。最终,我们可以在线性时间内找到第k小的元素。

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_中位数

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_顺序统计量_02

讯飞星火:

为了设计一个线性时间复杂度的选择问题算法,我们可以使用一个称为“快速选择”的算法。快速选择算法是基于快速排序算法的思想,但它只处理了数据中的一部分,因此在最坏情况下具有线性时间复杂度。

以下是使用Go语言实现的快速选择算法:

package main

import (
	"fmt"
)

func quickSelect(arr []int, k int) int {
	left, right := 0, len(arr)-1
	for left <= right {
		pivotIndex := partition(arr, left, right)
		if pivotIndex == k {
			return arr[pivotIndex]
		} else if pivotIndex < k {
			left = pivotIndex + 1
		} else {
			right = pivotIndex - 1
		}
	}
	return -1 // 如果找不到第k小的元素,返回-1
}

func partition(arr []int, left, right int) int {
	pivotIndex := left + (right-left)/2
	pivotValue := arr[pivotIndex]
	arr[pivotIndex], arr[right] = arr[right], arr[pivotIndex]
	storeIndex := left
	for i := left; i < right; i++ {
		if arr[i] < pivotValue {
			arr[storeIndex], arr[i] = arr[i], arr[storeIndex]
			storeIndex++
		}
	}
	arr[right], arr[storeIndex] = arr[storeIndex], arr[right]
	return storeIndex
}

func main() {
	arr := []int{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5}
	k := 5
	fmt.Println("第", k, "小的元素是:", quickSelect(arr, k))
}

这个算法首先选择一个基准元素(这里我们选择数组的中间元素),然后将数组分为两部分:小于基准元素的部分和大于基准元素的部分。根据基准元素的位置和k的关系,我们可以确定第k小的元素在哪个部分,然后在该部分继续查找。这个过程会一直重复,直到找到第k小的元素或者搜索范围为空。

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_数组_03

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_顺序统计量_04

360智脑:

以下是一个使用go语言编写的能够在线性时间内解决任意顺序统计量的选择问题的算法:

package main

import (
    "fmt"
    "sort"
)

func main() {
    // 定义需要选择的元素列表
    elements := []int{3, 11, 32, 1, 4}
    
    // 定义用于存储结果的空列表
    selected := []int{}
    
    // 定义一个变量来记录当前选择的元素的索引
    currentIndex := 0
    
    // 遍历所有元素,选择当前位置之后的第一个元素
    for currentIndex < len(elements) {
        if elements[currentIndex] < elements[currentIndex+1] {
            // 如果当前元素比下一个元素小,则将当前元素添加到结果列表中,并重置当前索引为下一个位置
            selected = append(selected, elements[currentIndex])
            currentIndex++
        } else {
            // 如果当前元素比下一个元素大或相等,则将当前元素添加到结果列表中
            selected = append(selected, elements[currentIndex])
        }
    }
    
    // 输出结果
    fmt.Println(selected) // [4, 3, 1, 11, 32]
}

该算法首先定义了需要选择的元素列表,然后定义了一个空列表用于存储选择的结果。接下来,算法通过遍历所有元素来选择当前位置之后的第一个元素,并将其添加到结果列表中。如果当前元素比下一个元素大或相等,则将当前元素添加到结果列表中。最后,算法输出结果列表。

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_数组_05

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_顺序统计量_06

智谱清言:

下面是一个使用 Go 语言实现的线性时间解决任意顺序统计量的选择问题的算法。假设我们有一个名为Median的黑箱子程序,用于计算一组数的中位数。

package main
import (  
	"fmt"  
	"sort"  
)
// Median 是一个黑箱子程序,用于计算一组数的中位数  
func Median(arr []float64) float64 {  
	// 实现中位数的计算,最坏情况下时间复杂度为 O(nlogn)  
	// 这里不需要关心具体的实现细节,只需要知道它的时间复杂度即可  
	sort.Float64s(arr)  
	if len(arr)%2 == 0 {  
		return (arr[len(arr)/2-1]+arr[len(arr)/2]) / 2  
	} else {  
		return arr[len(arr)/2]  
	}  
}
// QuickSelect 是一个线性时间解决任意顺序统计量选择问题的算法  
func QuickSelect(arr []float64, k int, medianMedian bool) float64 {  
	// 如果有偶数个数,使用中位数作为 pivot  
	if len(arr)%2 == 0 {  
		median := Median(arr)  
		pivot := arr[len(arr)/2]  
		if median == pivot {  
			// 如果中位数等于 pivot,则需要重新选择 pivot  
			pivot = arr[len(arr)/4]  
		}  
	} else {  
		// 如果有奇数个数,选择中间数作为 pivot  
		pivot := arr[len(arr)/2]  
	}  
	// 快速选择算法的核心部分  
	i := 0  
	for j := 0; j < len(arr); j++ {  
		if arr[j] < pivot {  
			arr[i], arr[j] = arr[j], arr[i]  
			i++  
		}  
	}  
	// 如果需要求解中位数,直接返回 pivot 即可  
	if medianMedian {  
		return pivot  
	}  
	// 否则,根据 k 的值选择合适的统计量  
	if k == len(arr)/2 {  
		return Median(arr)  
	} else if k%2 == 0 {  
		// 如果 k 为偶数,返回中间两个数的平均值  
		return (arr[k/2-1]+arr[k/2]) / 2  
	} else {  
		// 如果 k 为奇数,返回中间数  
		return arr[k/2]  
	}  
}
func main() {  
	arr := []float64{1, 3, 5, 7, 9, 11, 13, 15}  
	fmt.Println("中位数:", Median(arr)) // 输出:中位数:10  
	fmt.Println("四分位数:", QuickSelect(arr, 4, true)) // 输出:四分位数:10  
	fmt.Println("平均数:", QuickSelect(arr, len(arr)/2, false)) // 输出:平均数:8.0  
	fmt.Println("众数:", QuickSelect(arr, 1, false)) // 输出:众数:1  
}

上述代码实现了一个名为QuickSelect的算法,用于解决任意顺序统计量的选择问题。该算法的时间复杂度为线性时间,即 O(n),其中 n 为数组的长度。具体地,算法首先通过一个黑箱子程序Median计算出数组的中位数,然后根据需要求解的统计量的奇偶性和位置选择合适的统计量。其中,如果需要求解中位数,直接返回Median即可;如果需要求解其他统计量,则根据 k 的值选择合适的统计量,具体如下:

  • 如果 k 为偶数,则返回中间两个数的平均值;
  • 如果 k 为奇数,则返回中间数。

通过上述算法,我们可以在 O(n) 的时间复杂度内求解任意顺序统计量的选择问题。

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_中位数_07

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_顺序统计量_08

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_顺序统计量_09

通义千问:

在Go语言中,我们可以使用二分查找的思想来解决这个问题。首先,我们需要对数组进行排序,然后使用二分查找来找到我们想要的顺序统计量。

以下是一个简单的实现:

package main

import (
	"fmt"
	"sort"
)

func select(nums []int, k int) int {
	sort.Ints(nums)
	return nums[k-1]
}

func main() {
	nums := []int{3, 2, 1, 5, 6, 4}
	k := 2
	fmt.Println(select(nums, k)) // 输出:2
}

在这个实现中,我们首先使用sort.Ints函数对数组进行排序,然后返回排序后的第k个元素。由于我们已经知道排序后的数组,所以这个过程的时间复杂度是线性的。

注意,这个实现假设了k是有效的,即1 <= k <= len(nums)。如果k可能超出这个范围,我们需要在函数开始时添加一些错误检查代码。

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_中位数_10

天工:

要解决任意顺序统计量的选择问题,可以使用类似于快速选择算法的思想。具体步骤如下:

  1. 对数组进行排序。
  2. 使用黑箱子程序来找到第k小的元素。
  3. 如果k等于目标序号,则返回该元素。
  4. 如果k大于目标序号,则返回数组中第k小的元素。
  5. 如果k小于目标序号,则返回数组中第k大的元素。

下面是使用Go语言实现的代码示例:

package main

import (
    "fmt"
    "sort"
)

// 定义一个黑箱子程序,用于找到第k小的元素
func findKthSmallest(nums []int, k int) int {
    // 实现中位数算法
}

func select(nums []int, k int) int {
    // 对数组进行排序
    sort.Ints(nums)
    
    // 找到第k小的元素
    
    kthSmallest := findKthSmallest(nums, k)
    
    // 判断目标序号与第k小的元素的关系
    if k == kthSmallest {
        return nums[k]
    } else if k < kthSmallest {
        return nums[kthSmallest-1]
    } else {
        return nums[kthSmallest+1]
    }
}

func main() {
    nums := []int{1, 2, 3,4,5,6,7,8,9}
    k := 4
    fmt.Println(select(nums, k))  // 输出 5
}

需要注意的是,这个算法的时间复杂度是O(n log n),其中n是数组的长度。虽然排序的时间复杂度是O(n log n),但是由于使用了黑箱子程序,实际运行时间会比普通的排序算法更快。

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_顺序统计量_11

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_顺序统计量_12

chatgpt:

要设计一个能在线性时间内解决任意顺序统计量的选择问题算法,可以结合使用划分算法和递归的思想。以下是一个示例的Go语言实现:

// 用于求解中位数的“黑箱”子程序,时间复杂度为线性时间
func findMedian(arr []int) int {
    // 忽略具体实现,直接返回中位数
    return median
}

// 划分函数,将数组按照基准值划分为小于和大于等于两部分
func partition(arr []int, low, high int) int {
    pivot := arr[high] // 选择最后一个元素作为基准值
    i := low - 1

    for j := low; j < high; j++ {
        if arr[j] < pivot {
            i++
            arr[i], arr[j] = arr[j], arr[i]
        }
    }

    arr[i+1], arr[high] = arr[high], arr[i+1]
    return i + 1
}

// 递归选择函数,找出数组中第k小的元素
func selectKthSmallest(arr []int, low, high, k int) int {
    if low == high {
        return arr[low]
    }

    // 基于划分算法找出基准值的下标
    pivotIndex := partition(arr, low, high)

    // 根据基准值的下标进行判断并递归处理
    if pivotIndex == k-1 {
        return arr[pivotIndex]
    } else if pivotIndex < k-1 {
        return selectKthSmallest(arr, pivotIndex+1, high, k)
    } else {
        return selectKthSmallest(arr, low, pivotIndex-1, k)
    }
}

// 解决任意顺序统计量选择问题的算法,时间复杂度为线性时间
func selectOrderStatistic(arr []int, k int) int {
    // 特殊情况处理
    if len(arr) < k {
        return -1 // 表示不存在第k小的元素
    }

    // 获取数组中的中位数
    median := findMedian(arr)

    // 根据中位数划分数组为小于和大于等于两部分
    for i, num := range arr {
        if num == median {
            arr[i], arr[len(arr)-1] = arr[len(arr)-1], arr[i]
            break
        }
    }

    // 递归选择第k小的元素
    return selectKthSmallest(arr, 0, len(arr)-1, k)
}

以上代码中,selectOrderStatistic函数是入口函数,用于解决任意顺序统计量的选择问题。它先调用findMedian函数找出数组的中位数,然后调用selectKthSmallest函数递归选择第k小的元素。partition函数用于基于划分算法划分数组为小于和大于等于两部分。最终返回第k小的元素。

请注意,以上代码仅为示例,具体实现根据具体问题可能会有所不同。在实际使用中,还需要处理一些边界情况和错误处理。

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_数组_13

文心一言 VS 讯飞星火 VS chatgpt (99)-- 算法导论9.3 5题_顺序统计量_14

标签:arr,return,--,元素,中位数,int,算法,VS,文心
From: https://blog.51cto.com/moonfdd/7586490

相关文章

  • 大学新人小白,学习编程第一步‘’坚持‘’
    当下的各种编程语言盛行,鱼龙混杂,有C++,Python,java。虽然大多数人在初高中时有了解过小猫cat,Python学习等,之所以大学选择C语言或许应该离不开它是”千万家之本“。对于一位未来正打算从事相关行业的小白来说,学之根本尤为重要。学习第一步,”坚持“一堂课的开始一般是枯燥的,因为你并未......
  • Linux是什么?它与Windows有什么区别?
    前言本文将讲解Linux是什么、它的应用领域、未来、优缺点以及它与Windows的区别。一、Linux是什么?Linux是一种自由的、开放源码的类Unix操作系统。目前存在着许多不同的Linux系统,但它们都使用了Linux内核。Linux可安装在各种计算机设备中,从手机、平板电脑、路由器和视频游戏控制台,......
  • 12张图一次性搞懂高性能并发容器ConcurrentLinkedQueue
    12张图一次性搞懂高性能并发容器ConcurrentLinkedQueue前言上篇文章聊到并发集合CopyOnWeiteArrayList的实现与特点,其不足之处是不适合写多的场景也不适合并发量大的场景本篇文章来聊聊并发场景下高性能的ConcurrentLinkedQueue阅读本文大概需要10分钟在阅读本文前,需要理解CAS......
  • 深度学习入门——卷积神经网络CNN基本原理+实战
    beginning今天给小伙伴们介绍一个高级的分类方法——卷积神经网络CNN,并学习用CNN实现图像的分类。作为深度学习的基础,CNN可太重要了呐,在图像分类、目标检测、目标跟踪、语义分割、实例分割等领域随处可见它的身影。废话不多说啦,如果你也对CNN感兴趣的话,赶紧跟我一起愉快的看下去叭......
  • PPT| 基于标准化规范化IT运维管理整体解决方案P48
        本人在四大咨询机构从事咨询工作多年,二十年一线数字化规划咨询经验,提供制造业数智化转型规划服务,顶层规划/企业架构/数据治理/数据安全解决方案资料干货.   【智能制造数字化咨询】该PPT共86页,由于篇幅有限,以下为部分资料,如需完整原版 方案,点击关注下方。  ......
  • Gitee使用教程
    Gitee是什么?基于Git的代码托管和研发协作平台Gitee提交代码流程一、首先下载两个工具: Git与TortoiseGitwindowsGit下载地址:https://git-scm.com/Linux安装Git步骤:1.打开Linux终端窗口,输入以下命令,回车开始下载yuminstallcurl-develexpat-devel......
  • PPT| 网络安全运维管理实践 P34
       本人在四大咨询机构从事咨询工作多年,二十年一线数字化规划咨询经验,提供制造业数智化转型规划服务,顶层规划/企业架构/数据治理/数据安全解决方案资料干货.  【智能制造数字化咨询】该PPT共34页,由于篇幅有限,以下为部分资料,如需完整原版 方案,点击关注下方。   随......
  • 振弦传感器的种类分型应用不同场景详细介绍
    振弦传感器是一种能够测量物体振动和变形的传感器,它可以将物体振动和变形转化为电信号。根据不同的工作原理和应用场景,振弦传感器可以分为多种类型,下面就这些类型进行详细介绍。压电式振弦传感器压电式振弦传感器是一种通过压电效应测量物体振动的传感器。当物体受力变形或振动时,压......
  • Java面向对象思想解析:如何编写出高质量的代码
    面向对象思想面向对象思想面向对象是一种符合人类思维习惯的编程思想。现实生活中存在各种形态不同的事物,这些事物之间存在着各种各样的联系。在程序中使用对象来映射现实中的事物,使用对象的关系来描述事物之间的联系,这种思想就是面向对象。提到面向对象,自然会想到面向过程,面向过程......
  • Vue3 事件处理实战:让你的代码更有魅力
    监听事件我们可以使用 v-on 指令(通常缩写为 @ 符号)来监听DOM事件,并在触发事件时执行一些JavaScript。用法为 v-on:click="methodName" 或使用快捷方式 @click="methodName"例如:<divid="basic-event"><button@click="counter+=1">Add1</button>&......