首页 > 编程语言 >C++实现双向RRT算法

C++实现双向RRT算法

时间:2022-10-02 14:11:43浏览次数:55  
标签:ListPoint return point double C++ 算法 newPoint const RRT

C++实现双向RRT算法

背景介绍

RRT(Rapidly-exploring Random Trees)是Steven M. LaValle和James J. Kuffner Jr.提出的一种通过所及构建空间搜索树实现对非凸高维空间快速搜索算法。该算法可以很容易的处理包含障碍和差分运动约束的场景,因此被广泛应用在各种机器人、无人车的运动规划场景中。

双向RRT算法

为了加快随机搜索树规划路径的速度,因此提出了一种新的搜索思路,即从起点和终点同时开始构建随机搜索树,并每次进行判断产生的节点是否满足连接的条件。并在连接条件上添加了转角约束和动态步长策略。

转角约束是用来限制路线的转折角度,避免超过无人车的最大转弯角度。动态步长策略是在产生新节点时用于判断距离障碍物的趋势,动态的调整步长,能够使规划出的路径更加平滑,同时也可加快收敛速度。

C++代码实现如下:

具体代码

头文件
//
// Created by cntia on 2022-10-01.
//

#ifndef RRT_C_RRT_H
#define RRT_C_RRT_H
#include <cmath>
#include <iostream>

using namespace std;
const int RAND_X = 21;
const int RAND_Y = 89;
const double EPS = 1e-6;

struct ListPoint{
    double x;
    double y;
    ListPoint *parent;
    ListPoint *next;
    ListPoint(): x(0), y(0), parent(nullptr),next(nullptr){}
    ListPoint(double x, double y): x(x), y(y), parent(nullptr), next(nullptr){}
};
struct ListObstacle {
    double x;
    double y;
    double r;
    ListObstacle *next;
    ListObstacle():x(),y(), r(), next(nullptr){}
    ListObstacle(double x, double y, double r):x(x),y(y), r(r), next(nullptr){}
};
struct Vector {
    double x;
    double y;
};
class RT {
private:
    ListPoint *one;
    ListPoint *two;
    ListObstacle *obstacle;

    ListPoint *start;
    ListPoint *goal;
    ListPoint *safe;
    ListPoint *recover;

    double angle;
    double step;
    double dist;
    /**
 * 生成随机点
 * @return
 */
    static ListPoint* randomPoint();
    /**
     * 计算向量夹角
     * @param vector1
     * @param vector2
     * @return
     */
    double getAngle(Vector vector1, Vector vector2);
    /**
     * 向搜索树插入实际新节点
     * @param t
     * @param point
     */
    void pushBack(int t,ListPoint *point);
    /**
     * 查询最近节点
     * @param list
     * @param point
     * @return
     */
    ListPoint *getNearestIndexPoint(ListPoint *list, ListPoint *point);
    /**
     * 查询最近障碍物
     * @param point
     * @return
     */
    ListObstacle *getNearestIndexObstacle(ListPoint *point);
    /**
     * 计算动态步长
     * @param n_point
     * @param a_point
     * @return
     */
    double dynamicStep(ListPoint *n_point, ListPoint * a_point);
    /**
     * 碰撞检测
     * @param t
     * @param newPoint
     * @return
     */
    bool collisionCheck(int t,const ListPoint *newPoint);
    /**
     * 转角约束检测
     * @param newPoint
     * @param parentPoint
     * @param ancestorPoint
     * @return
     */
    bool angleCheck(const ListPoint *newPoint, const ListPoint *parentPoint, const ListPoint *ancestorPoint);
    /**
     * 节点检测
     * @param t
     * @param newPoint
     * @return
     */
    bool conditionCheck(int t,const ListPoint *newPoint);
    /**
     * 平滑连接判断
     * @param onePoint
     * @param twoPoint
     * @return
     */
    bool perfectConnect(const ListPoint *onePoint, const ListPoint *twoPoint);
    /**
     * 实际坐标计算
     * @param t
     * @param rnd
     * @return
     */
    ListPoint *coordinate(int t, ListPoint *rnd);
public:
    RT(ListPoint *start,ListPoint *goal,ListPoint *safe,ListPoint *recover, double angle,
       double step, double dist, ListObstacle *obstacle) : start(start), goal(goal), safe(safe), recover(recover),
       angle(angle), step(step),dist(dist),obstacle(obstacle) {
        ListPoint *headOne = start;
        headOne->next = safe;
        safe->parent = headOne;
        this->one = headOne;

        ListPoint *headTwo = goal;
        headTwo->next = recover;
        recover->parent = headTwo;
        this->two = headTwo;
    };
    /**
     * 路径规划
     */
    void planning();
};
#endif //RRT_C_RRT_H

源文件
//
// Created by cntia on 2022-10-01.
//

#include "../headers/RRT.h"

ListPoint *RT::randomPoint() {
    double x = (rand() % (RAND_Y - RAND_X + 1)) + RAND_X;
    double y = (rand() % (RAND_Y - RAND_X + 1)) + RAND_X;
    auto *point = new ListPoint(x, y);
    return point;
}


double RT::getAngle(const Vector vector1, const Vector vector2) {
    double PI = 3.141592653;
    double t = (vector1.x * vector2.x + vector1.y * vector2.y) / (sqrt(pow(vector1.x, 2) + pow(vector1.y, 2)) * sqrt(pow(vector2.x, 2) + pow(vector2.y, 2)));
    double angle = acos(t) * (180 / PI);
    return angle;
}


void RT::pushBack(int t, ListPoint *point) {
    ListPoint *last;
    if(t == 1){
        last = this->one;
    } else {
        last = this->two;
    }
    point->next = nullptr;
    while(last->next != nullptr){
        last = last->next;
    }
    last->next = point;
    point->parent = last;
}


ListPoint *RT::getNearestIndexPoint(ListPoint *list, ListPoint *point) {
    auto *minIndex = new ListPoint;
    auto *head = list;
    double minD = 1.79769e+308;
    double d = 0;
    while(head){
        d = pow((point->x - head->x), 2) + pow((point->y - head->y), 2);
        if(d + EPS < minD){
            minD = d;
            minIndex = head;
        }
        head = head->next;
    }
    return minIndex;
}


ListObstacle *RT::getNearestIndexObstacle(ListPoint *point) {
    auto *minIndex = new ListObstacle;
    auto *head = this->obstacle;
    double minD = 1.79769e+308;
    double d = 0;
    while(head){
        d = sqrt(pow(head->x - point->x, 2) + pow((head->y - point->y), 2)) - head->r;
        if(d+EPS<minD){
            minD = d;
            minIndex = head;
        }
        head = head->next;
    }
    return minIndex;
}


double RT::dynamicStep(ListPoint *n_point, ListPoint *a_point) {
    double theta = atan2(a_point->y - n_point->y, a_point->x - n_point->x);
    a_point->x += cos(theta) * (this->dist + this->step) / 2;
    a_point->y += sin(theta) * (this->dist + this->step) / 2;

    auto * obstacle = getNearestIndexObstacle(a_point);

    double l_n = sqrt(pow(n_point->x-obstacle->x, 2)+pow(n_point->y - obstacle->y, 2)) - obstacle->r;
    double dynamic = this->step / (1 + (this->step / this->dist - 1) * exp( -3 * l_n / this->step));
    return dynamic;
}


bool RT::collisionCheck(int t,const ListPoint *newPoint) {
    bool flag = true;
    ListObstacle *head = this->obstacle;
    while(head != nullptr){
        double dx = head->x - newPoint->x;
        double dy = head->y - newPoint->y;
        double d = sqrt(pow(dx, 2) + pow(dy, 2));

        ListPoint *parentPoint = newPoint->parent;

        Vector vector_p_n = {newPoint->x - parentPoint->x, newPoint->y - parentPoint->y};
        Vector vector_p_o = {head->x - parentPoint->x, head->y - parentPoint->y};
        double d_p_n = abs(sqrt(pow(vector_p_o.x, 2) + pow(vector_p_o.y, 2)) * sin(getAngle(vector_p_n, vector_p_o)));
        if(d + EPS < head->r || d_p_n + EPS < head ->r){
            flag = false;
            break;
        }
        head = head->next;
    }
    return flag;
}


bool RT::angleCheck(const ListPoint *newPoint, const ListPoint *parentPoint, const ListPoint *ancestorPoint) {
    Vector vector_p_n = {newPoint->x - parentPoint->x, newPoint->y - parentPoint->y};

    Vector vector_a_p = {parentPoint->x - ancestorPoint->x, parentPoint->y - ancestorPoint->y};

    double angle = getAngle(vector_a_p, vector_p_n);
    if(angle+EPS <= this->angle){
        return true;
    } else{
        return false;
    }
}


bool RT::conditionCheck(int t,const ListPoint *newPoint) {
    if(collisionCheck(t, newPoint)){
        ListPoint *parentPoint = newPoint->parent;
        if(parentPoint->parent == nullptr){
            return false;
        }
        ListPoint *ancestorPoint = parentPoint->parent;
        if(angleCheck(newPoint, parentPoint, ancestorPoint)){
            return true;
        } else {
            return false;
        }
    } else {
        return false;
    }
}


bool RT::perfectConnect(const ListPoint *onePoint, const ListPoint *twoPoint) {
    ListPoint *oneParent = onePoint->parent;
    ListPoint *twoParent = twoPoint->parent;

    Vector vector_n_w = {onePoint->x - oneParent->x, onePoint->y - oneParent->y};

    Vector vector_w_x = {twoPoint->x - onePoint->x, twoPoint->y - onePoint->y};

    Vector vector_x_j = {twoParent->x - twoPoint->x, twoParent->y - twoPoint->x};

    double angle_one = getAngle(vector_n_w, vector_w_x);
    double angle_two = getAngle(vector_w_x, vector_x_j);
    if(angle_one <= this->angle - EPS){
        if(fabs(angle_two - 180.0) < EPS || fabs(angle_one - 0.0) < EPS){
            return false;
        }else{
            return true;
        }
    }else{
        return false;
    }
}


ListPoint *RT::coordinate(int t, ListPoint *rnd) {
    // 寻找最近节点
    auto *nearestPoint = new ListPoint;
    if(t==1) {
        nearestPoint = getNearestIndexPoint(this->one, rnd);
    } else {
        nearestPoint = getNearestIndexPoint(this->two, rnd);
    }
    // 按照原始步长计算虚坐标
    double theta = atan2(rnd->y - nearestPoint->y, rnd->x - nearestPoint->x);
    auto *newPoint = new ListPoint(nearestPoint->x + cos(theta) * this->step, nearestPoint->y + sin(theta) * this->step);
    // 使用动态步长计算实际坐标
    double actualStep = dynamicStep(nearestPoint, newPoint);
    newPoint->x = nearestPoint->x + cos(theta) * actualStep;
    newPoint->y = nearestPoint->y + sin(theta) * actualStep;
    newPoint->parent = nearestPoint;
    return newPoint;
}


void RT::planning() {
    while(true){
        ListPoint *rnd = randomPoint();
        ListPoint *newPoint=coordinate(1, rnd);

        if(!conditionCheck(1, newPoint)){
            continue;
        }
        pushBack(1, newPoint);

        ListPoint *newPointTwo = coordinate(2, newPoint);
        if(!conditionCheck(2, newPointTwo)){
            continue;
        }
        pushBack(2, newPointTwo);

        double dx = newPoint->x - newPointTwo->x;
        double dy = newPoint->y - newPointTwo->y;
        double d = sqrt(pow(dx, 2)+ pow(dy, 2));

        if(this-> dist+ EPS < d && d + EPS <this->step){
            if(perfectConnect(newPoint, newPointTwo)){
                break;
            }
            else{
                continue;
            }
        }else{
            continue;
        }
    }
    ListPoint *tempOne = this->one;
    while(tempOne!= nullptr){
        cout<<tempOne->x<<"  "<<tempOne->y<<endl;
        tempOne = tempOne->next;
    }
    ListPoint *tempTwo = this->two;
    while(tempTwo != nullptr){
        cout<<tempTwo->x<<"  "<<tempTwo->y<<endl;
        tempTwo = tempTwo->next;
    }
}
主程序
#include "headers//RRT.h"
using namespace std;

const double ANGLE = 60.0;
const double STEP = 10.0;
const double DISTANCE = 5.0;

int main() {
    double obstacle_x[]= {50, 50, 50};
    double obstacle_y[]= {50, 13, 87};
    double obstacle_r[]= {15, 12, 11};
    auto * obstacle = new ListObstacle(50, 50, 15);
    for(int i = 1; i<3; i++){
        auto *node = new ListObstacle;
        node->x = obstacle_x[i];
        node->y = obstacle_y[i];
        node->r = obstacle_r[i];

        node->next = obstacle->next;
        obstacle->next = node;
    }
    auto *start = new ListPoint(0, 0);
    auto *goal = new ListPoint(100, 100);
    auto *safe = new ListPoint(20, 20);
    auto *recover = new ListPoint(90, 90);
    RT rrt = RT(start, goal, safe, recover, ANGLE, STEP, DISTANCE, obstacle);
    rrt.planning();
}

标签:ListPoint,return,point,double,C++,算法,newPoint,const,RRT
From: https://www.cnblogs.com/cnpolaris/p/16748705.html

相关文章

  • 字符串匹配基础(上):如何借助哈希算法实现高效字符串匹配?
    链接:https://time.geekbang.org/column/article/71187目录字符串匹配算法BF算法RK算法字符串匹配算法BF算法、RK算法、BM算法、KMP算法BF算法和RK算法:单模......
  • [ 数据结构 - C++]红黑树RBTree
    在上篇文章我们了解了第一种平衡二叉搜索树AVL树,我们知道AVL树是通过平衡因子来控制左右子树高度差,从而将二叉树变成一颗平衡二叉搜索树。本篇文章我们将要了解另外一种平衡......
  • KMP算法
    KMP算法首先kmp算法有两个字符串,一个目标串s[],一个模板串p[]我们需要对模板串进行预处理,创建一个数组ne[i]表示以p[i]为结尾的字符串和前缀相等字符串的最长长度,就是前缀......
  • 对于关键路径算法中最迟发生时间取最小值的理解
    问题产生:错误理解:当前事件的最迟发生时间vl(i)的产生跟与之直接关联的后继事件j和中间活动<i,j>有关,如果要使当前事件发生的时间“最晚”,应当取集合{j}中产生的最大......
  • 基础算法五大板块
    基础动态规划基础的DP题目,模板题等。基础图论基础的最短路,最小生成树,拓扑排序等算法基础数学基础数论基础字符串基础算法骗分必备......
  • python关于算法题的输入
    关于Python算法题的输入处理最近在准备蓝桥杯,打算报Python组,所以开始尝试用Python刷算法题。【python&ACM输入输出的处理:sys.stdin.readline().strip().split())】上......
  • 高级算法/数据结构
    AhoCorasick自动机用于多模式字符串匹配。可持久化线段树利用前缀和思想求区间第k小等不易直接求出的值。后缀数组Manacher求最长回文串。......
  • 【WSN定位】基于改进chan算法和talor算法实现多基站目标定位附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • 【无人机】基于A星算法和B次样条实现危险模型实现无人机三维航迹规划附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • 算法题目(1)
    题目1给定一个有序数组arr,代表坐落在X轴上的点给定一个正数K,代表绳子的长度返回绳子最多压中几个点?即使绳子边缘处盖住点也算盖住输入:第一行arr的size,k第二行arr......