首页 > 编程语言 >Python小项目:利用 U-net 完成细胞图像分割

Python小项目:利用 U-net 完成细胞图像分割

时间:2023-08-17 15:34:07浏览次数:47  
标签:nn img Python self mask 图像 net model size

在这里插入图片描述

完整数据集下载:下载链接

1 前言

在当今数字化时代,图像处理和分析已经成为了科学研究和技术应用领域的关键部分。在生物医学领域,图像分析对于诊断、治疗和疾病研究具有重要意义。本项目将带您深入了解 U-net 细胞分割技术,这是一种在生物医学图像领域广泛应用的语义分割方法,旨在精确地提取图像中细胞部分的像素点。通过学习如何应用 U-net,您将能够更有效地处理生物医学图像,并从中获取有价值的信息。

2 实验概述

实验目的: 在本项目中,我们旨在精确提取图片中的细胞部分像素点,以实现细胞分割。

实验数据集:实验数据集

实验语言: 本项目主要使用了 Python 编程语言。

实验所需的库: 在实验中,我们使用了多个库,包括 PIL、numpy、torch 以及 opencv。如果你在安装后遇到问题,可以参考这篇博文:解决 opencv 安装问题。

实验数据集示例:

在这里插入图片描述(标注) 在这里插入图片描述

3 U-net 概述

在生物医学图像分析中,语义分割扮演着重要角色,应用广泛,涵盖了 x 射线、MRI 扫描、数字病理、显微镜、内窥镜等领域。更多关于 U-net 的详细讲解,请查看 U-net详细讲解在这里插入图片描述

4 实验过程及代码

step1:导入相关的包

import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, models, transforms
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchsummary import summary
from PIL import Image

import cv2
import os
import numpy as np
import matplotlib.pyplot as plt

step2:加载数据

# 图片大小设置
img_size = (512, 512)

# 数据预处理的转换
transform = transforms.Compose([
    transforms.ToTensor()
])

# 自定义数据集类
class MyData(Dataset):
    def __init__(self, path, img_size, transform):
        self.path = path
        self.files = os.listdir(self.path+"/images")
        self.img_size = img_size
        self.transform = transform
        
    def __getitem__(self, index):
        fn = self.files[index]
        img = Image.open(self.path + "/images/" + fn).resize(self.img_size)
        mask = Image.open(self.path + "/masks/" + fn).resize(self.img_size)
        if self.transform:
            img = self.transform(img)
            mask = self.transform(mask)
        return img, mask

    def __len__(self):
        return len(self.files)

# 训练数据集
train_path = "train"
train_data = MyData(train_path, img_size, transform)
train_data_size = len(train_data)
train_dataloader = DataLoader(train_data, batch_size=8, shuffle=True)

# 测试数据集
test_path = "test"
test_data = MyData(test_path, img_size, transform)
test_data_size = len(test_data)
test_dataloader = DataLoader(test_data, batch_size=1, shuffle=True)

# 获取数据示例并可视化
img, mask = train_data.__getitem__(0)
img, mask = img.mul(255).byte(), mask.mul(255).byte()
img, mask = img.numpy().transpose((1, 2, 0)), mask.numpy().transpose((1, 2, 0))

# 可视化示例
fig, ax = plt.subplots(1, 3, figsize=(30, 10))
ax[0].imshow(img)
ax[0].set_title('Img')
ax[1].imshow(mask.squeeze())
ax[1].set_title('Mask')
ax[2].imshow(img)
ax[2].contour(mask.squeeze(), colors='k', levels=[0.5])
ax[2].set_title('Mixed')

![在这里插入图片描述](/i/ll/?i=1dfe380909c24b339fa5adc71a12c499.png?,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAbHh5X2Zvcl9jb2Rpbmc=,size_20,color_FFFFFF,t_30,g_se,x_16

step3 U-net模型构建

# 连续两次卷积的模块
class Double_Conv2d(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(Double_Conv2d, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(inplace=True))
        self.conv2 = nn.Sequential(
            nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(inplace=True))

    def forward(self, inputs):
        outputs = self.conv1(inputs)
        outputs = self.conv2(outputs)
        return outputs

# 上采样块
class Up_Block(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(Up_Block, self).__init__()
        self.conv = Double_Conv2d(in_channel, out_channel)  # 卷积
        self.up = nn.ConvTranspose2d(in_channel, out_channel, kernel_size=2, stride=2)  # 反卷积上采样

    def forward(self, inputs1, inputs2):
        outputs2 = self.up(inputs2)  # 上采样
        padding = (outputs2.size()[-1] - inputs1.size()[-1]) // 2  # shape(batch, channel, width, height)
        outputs1 = F.pad(inputs1, 2 * [padding, padding])
        outputs = torch.cat([outputs1, outputs2], 1)  # 合并
        return self.conv(outputs)  # 卷积

# Unet网络
class Unet(nn.Module):
    def __init__(self, in_channel=3):
        super(Unet, self).__init__()
        self.in_channel = in_channel

        # 特征缩放
        filters = [16, 32, 64, 128, 256]  # 特征数列表

        # 下采样
        self.conv1 = Double_Conv2d(self.in_channel, filters[0])  # 卷积
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)  # 最大池化
        self.conv2 = Double_Conv2d(filters[0], filters[1])
        self.maxpool2 = nn.MaxPool2d(kernel_size=2)
        self.conv3 = Double_Conv2d(filters[1], filters[2])
        self.maxpool3 = nn.MaxPool2d(kernel_size=2)
        self.conv4 = Double_Conv2d(filters[2], filters[3])
        self.maxpool4 = nn.MaxPool2d(kernel_size=2)

        # center
        self.center = Double_Conv2d(filters[3], filters[4])

        # 上采样
        self.Up_Block4 = Up_Block(filters[4], filters[3])
        self.Up_Block3 = Up_Block(filters[3], filters[2])
        self.Up_Block2 = Up_Block(filters[2], filters[1])
        self.Up_Block1 = Up_Block(filters[1], filters[0])

        # final conv
        self.final = nn.Conv2d(filters[0], 1, kernel_size=1)
        self.out = nn.Sigmoid()

    def forward(self, inputs):
        conv1 = self.conv1(inputs)
        maxpool1 = self.maxpool1(conv1)
        conv2 = self.conv2(maxpool1)
        maxpool2 = self.maxpool2(conv2)
        conv3 = self.conv3(maxpool2)
        maxpool3 = self.maxpool3(conv3)
        conv4 = self.conv4(maxpool3)
        maxpool4 = self.maxpool4(conv4)

        center = self.center(maxpool4)

        up4 = self.Up_Block4(conv4, center)
        up3 = self.Up_Block3(conv3, up4)
        up2 = self.Up_Block2(conv2, up3)
        up1 = self.Up_Block1(conv1, up2)

        final = self.final(up1)
        return self.out(final)
#创建模型实例,并查看3*512*512的输入图像在每层的参数和输出shape
model = Unet()#创建Unet模型实例
if use_gpu:model = model.cuda()#如果有GPU可用,则将模型转移到GPU上
print(summary(model,(3,512,512)))#输出模型参数

step4:模型训练

def train_model(model, dataloader, data_size, use_gpu, criterion, optimizer, scheduler, num_epochs):
    best_model_wts = model.state_dict()#定义存储最佳模型的字典
    best_loss = np.inf#定义最佳模型的损失
    losslist = []

    for epoch in range(num_epochs):
        print('-' * 10, 'Epoch {}/{}'.format(epoch+1, num_epochs),'-' * 10)
        model.train(True)  # 设置模型为训练模式
        running_loss = 0.0#定义当前轮迭代损失

        for inputs, labels in dataloader:
            if use_gpu:inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())#将输入输入转移到对应设备上
            else:inputs, labels = Variable(inputs), Variable(labels)
            optimizer.zero_grad()# 初始化梯度
            outputs = model(inputs)# Forward得到输出
            loss = criterion(outputs.squeeze(1), labels.squeeze(1))#计算损失
            loss.backward()#损失梯度反传
            optimizer.step()#参数更新
            running_loss += loss.item() * inputs.size(0)#训练损失求和
            
        epoch_loss = running_loss / data_size
        print('Loss: {:.4f}'.format(epoch_loss))#输出当前轮迭代损失平均值
        scheduler.step()#学习率衰减
        losslist.append(epoch_loss)

        #保存最佳模型
        if epoch_loss < best_loss:
            print('Best Loss improved from {} to {}'.format(best_loss, epoch_loss))
            best_loss = epoch_loss
            best_model_wts = model.state_dict()
            

    print('Best Loss: {:4f}'.format(best_loss))#输出最佳模型的损失
    model.load_state_dict(best_model_wts)#加载最佳模型
    return model, losslist
criterion = nn.BCEWithLogitsLoss()#定义损失函数
optimizer_ft = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)#参数优化器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#每7个epoch学习率下降0.1
num_epochs = 50#机器较差 仅训练10个epoch
#训练模型
model, losslist = train_model(
    model=model,
    dataloader=train_dataloader,
    data_size=train_data_size,
    use_gpu=use_gpu,
    criterion=criterion,
    optimizer=optimizer_ft,
    scheduler=exp_lr_scheduler,
    num_epochs=num_epochs)
#可视化训练过程中损失变化
plt.xlim(0, len(losslist))
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.ylim(0, 1)
plt.plot(losslist)
plt.title('Loss curve')

在这里插入图片描述 step5:模型预测及评估 计算混淆矩阵和精度Acc的函数

# 获得混淆矩阵
def BinaryConfusionMatrix(prediction, groundtruth):
    TP = np.float64(np.sum((prediction == 1) & (groundtruth == 1)))
    FP = np.float64(np.sum((prediction == 1) & (groundtruth == 0)))
    FN = np.float64(np.sum((prediction == 0) & (groundtruth == 1)))
    TN = np.float64(np.sum((prediction == 0) & (groundtruth == 0)))
    return TN, FP, FN,TP
# 准确率的计算方法
def get_accuracy(prediction, groundtruth):
    TN, FP, FN,TP = BinaryConfusionMatrix(prediction, groundtruth)
    accuracy = float(TP+TN)/(float(TP + FP + FN + TN) + 1e-6)
    return accuracy
#加载测试数据
acc = []#用于存储每一张test图片的精度
model = model.to('cpu')
model.eval()#不使用BN和Dropout,防止预测图片失真
#Forward不存储梯度
with torch.no_grad():
    for img, mask in test_dataloader:
        pre = model(img)#Forward输出预测结果
        pre = pre.mul(255).byte().squeeze().numpy()#转为uint8的array,方便计算精度
        mask = mask.mul(255).byte().squeeze().numpy()
        _, pre = cv2.threshold(pre,0,1,cv2.THRESH_BINARY | cv2.THRESH_OTSU)#THRESH_OTSU大津法二值化图像,方便计算精度
        _, mask = cv2.threshold(mask,0,1,cv2.THRESH_BINARY | cv2.THRESH_OTSU)
        acc.append(get_accuracy(pre, mask))#计算并存储精度
print('Acc:', [x for x in acc])#输出每张图的精度及平均精度
print('Mean_Acc:{}'.format(np.mean(acc)))

step6:可视化展示

img = img.mul(255).byte().squeeze().numpy().transpose((1, 2, 0))
print("img.shape={}, mask.shape={}, pre.shape={}".format(img.shape, mask.shape, pre.shape))

fig, ax = plt.subplots(1, 3, figsize=(30, 10))
ax[0].imshow(img)
ax[0].set_title('Img')
ax[1].imshow(mask)
ax[1].set_title('Mask')
ax[2].imshow(pre)
ax[2].set_title('Pre')

在这里插入图片描述

5 结语

在我们探索这个 U-net 细胞分割项目的过程中,我们深入了解了在生物医学图像分析领域中的重要应用。通过这个项目,我们更加理解了 U-net 这一强大的语义分割方法,它能够精确地提取细胞图像中的像素点,为生物医学领域的研究和诊断提供了重要支持。

在本文中,我们首先介绍了实验的目的以及所用的数据集、必要的 Python 库和技术。接下来,我们详细解释了 U-net 的工作原理,并探讨了它在生物医学图像分割中的广泛应用。通过深入挖掘相关资源,我们更深入地了解了 U-net 在生物医学领域的多种应用场景和挑战。

此外,我们还通过示例代码演示了如何加载和预处理数据集,构建 U-net 模型,并对其进行训练和预测。通过详细的代码注释,我们希望能让你更容易理解每个步骤的目的和功能。最后,我们展示了一些图像示例,向你展示了 U-net 分割模型的效果。

综上所述,这个 U-net 细胞分割项目为生物医学图像分析领域的研究和实际应用提供了强大工具。通过深入研究这个项目,我们更好地理解了 U-net 的原理和应用,也为未来的研究和创新铺平了道路。无论是自动化医学影像分析,还是更准确的疾病诊断,U-net 都将在生物医学领域持续发挥着重要作用。在这个不断进步的领域中,我们期待着更多人能够借助 U-net 和类似的技术,为医学科学的进步贡献自己的一份力量。

在这里插入图片描述

标签:nn,img,Python,self,mask,图像,net,model,size
From: https://blog.51cto.com/u_15229916/7123244

相关文章

  • 3分钟学会Python 常用配置文件处理
    一:配置文件1.什么是配置文件配置文件是为程序配置参数和初始设置的文件。一般为文本文件,以ini,conf,cnf,cfg,yaml等作为后缀名。例如mysql的配置文件my.cnf内容如下:[mysqld]#Onlyallowconnectionsfromlocalhostbind-address=0.0.0.0mysqlx-bind-address=127.0.0.......
  • Python Djang全栈开发中问题记录
    1、引用bootstrap5现成前端框架时,iframe嵌入访问不了网页,报错failedtoloadresponsedata:Noresourcewithgivenidentifierfound,控制台报错:Refusedtodisplay'http://127.0.0.1:8000/'inaframebecauseitset'X-Frame-Options'to'deny'.,直接访问地址是正常展示......
  • 某公司笔试题 - 删除字符串中出现次数最少的字符(附python代码)
    #实现删除字符串中出现次数最少的字符,若出现次数最少的字符有多个,则把出现次数最少的字符都删除。输入删除这些单词后的字符串,字符串中其它字符保持原来的顺序。#数据范围:输入的字符串长度满足1<=n<=20,保证输入的字符串中仅出现小写字母str1=input().lower()dic={}if1<......
  • asp.net core Webapi中返回400错误中的‘Null集合属性序列化Json’情况
    当序列化Json时,有集合类型的属性的值为Null,则序列化后的json就有问题,不能通过asp.netcoreWebApi的校验 解决方法是:只需要对集合默认初始化即可......
  • 在.NET中集成第三方API和服务
    当在.NET应用程序中集成第三方API和服务时,您可以通过使用合适的库、SDK和工具来实现与这些服务的通信。这可以涉及与Web服务、云服务、社交媒体平台等的集成。以下是一个简单的示例,演示了如何在.NET应用程序中集成一个虚构的天气API。步骤1:获取API密钥首先,您需要从目标API提供商......
  • python 初始化类对象时没有执行类的构造法方法
    这个地方错了  修改: ......
  • 【黑产攻防道02】如何对抗黑产的图像识别模型
    全文8799字,预计阅读时间约25分钟,建议收藏后阅读验证码本质上自带一层答案的语义,这是天然的区分人和自动程序的地方。无论使用哪一种方式破解验证码,都必须识别出答案。在多年与黑产破解者的博弈对抗的过程中,我们发现,从限制黑产获取验证码图片答案这个方向来进行防御,不仅可以减少运营......
  • 基于Kubernetes云原生技术的低代码PaaS平台,快速构建企业级应用程序
    低代码开发平台只需要编写简单的配置文件即可构建企业级应用程序。低代码PaaS平台可以在云端开发、部署、运行低代码应用程序。使用独立数据库模型,基于Kubernetes云原生技术,每个租户均可拥有一套独立的存储、数据库、代码和命名空间,实现了100%的租户数据隔离,并可以随时迁移到私有部......
  • Kubernetes守护进程集 DaemonSet
    守护进程集DaemonSet守护进程集也有副本数概念,但是副本数概念并不是通过配置清单的方式人为去定义的,他是靠你当前集群的节点个数,比如我当前集群之前安装集群安装的网络插件calico[root@k8s-master1deployment]#kubectlgetpods-nkube-systemNAME......
  • .NET-10-Edge插件开发
    目录有点意思,不过都是前端呢参考链接:官方文档Chromeapi照搬就好,扩展的话,亲手试了一下,有点那个味道,要深入研究下,不过大部分都是js,得学习才好。......