首页 > 编程语言 >文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题

时间:2023-08-07 12:32:45浏览次数:40  
标签:结点 删除 val -- self VS 文心 heap 节点


八、HEAP-DELETE(A,i)操作能够将结点 i 从堆 A 中删除。对于一个包含 n个元素的堆,请设计一个能够在 O(lgn)时间内完成的 HEAP-DELETE 操作。

文心一言:

要在 O(log n) 时间内完成 HEAP-DELETE 操作,可以使用以下方法:

1.首先找到要删除的节点 i 的父节点。可以从根节点开始,依次向上遍历,直到找到节点 i。

2.比较节点 i 的值和父节点的值,如果 i 的值比父节点的值大,则将父节点的值与 i 的值交换。

3.然后将 i 的父节点从堆中删除,即执行 HEAP-DELETE(A,父节点)。

4.重复步骤 2 和步骤 3,直到节点 i 的值不再是堆中的最大值。

这个方法的的时间复杂度是 O(log n),因为每次操作都会将堆的深度减少一半,最多执行 log n 次操作。

以下是这个算法的伪代码:

function heapDelete(A, i)  
    while (i > 1)  
        if (A[i/2] < A[i])  
            break  
        swap(A[i/2], A[i])  
        i = i/2

这里 swap 函数用于交换两个元素的值,heapDelete 函数中用它来交换节点 i 和其父节点的值。

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_文心一言

讯飞星火:

为了在 O(lgn) 时间内完成 HEAP-DELETE 操作,我们可以使用以下策略:

1.从堆的根节点开始,找到要删除的结点 i。

2.如果 i 是根节点,那么直接将左子树的最大结点提升为新的根节点,并删除 i。

3.如果 i 不是根节点,那么比较 i 和其父节点的值。如果 i 的值小于等于其父节点的值,那么将 i 从其父节点的左子树中删除;否则,将 i 从其父节点的右子树中删除。重复这个过程,直到找到要删除的结点 i。

4.在删除结点 i 之后,重新调整堆的结构以保持堆的性质。

以下是一个 Python 实现的示例:

class Heap:
    def __init__(self):
        self.heap = []

    def parent(self, i):
        return (i - 1) // 2

    def left_child(self, i):
        return 2 * i + 1

    def right_child(self, i):
        return 2 * i + 2

    def sift_up(self, i):
        while i > 0 and self.heap[self.parent(i)] < self.heap[i]:
            self.heap[self.parent(i)], self.heap[i] = self.heap[i], self.heap[self.parent(i)]
            i = self.parent(i)

    def sift_down(self, i):
        max_index = i
        l = self.left_child(i)
        r = self.right_child(i)
        if l < len(self.heap) and self.heap[l] > self.heap[max_index]:
            max_index = l
        if r < len(self.heap) and self.heap[r] > self.heap[max_index]:
            max_index = r
        if i != max_index:
            self.heap[i], self.heap[max_index] = self.heap[max_index], self.heap[i]
            self.sift_down(max_index)

    def delete(self, i):
        if i < len(self.heap):
            del self.heap[i]
            self.sift_down(i)
            self.sift_up(i)
        else:
            raise IndexError("Index out of range")

这个实现中,delete 方法就是 HEAP-DELETE(A,i) 操作。它首先检查要删除的结点 i 是否在堆中,然后删除该结点并重新调整堆的结构。

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_算法_02

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_开发语言_03

360智脑:

这是一个经典的算法问题,可以使用二叉堆的插入和删除操作的时间复杂度为 O(logn),因此可以在 O(logn) 的时间内完成 HEAP-DELETE 操作。具体实现方式可以是在堆顶查找需要删除的元素,然后将其从堆中移除并重新插入堆中即可。

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_算法_04

chatglm:

为了设计一个能够在 O(lgn) 时间内完成的 HEAP-DELETE 操作,我们可以使用二分查找的方法来找到结点 i 在堆中的位置。具体步骤如下:

1.初始化一个指针 p,指向堆 A 中的第一个元素。

2.使用二分查找的方法,找到结点 i 在堆中的位置。具体来说,我们可以先将 p 指向堆的中间位置,然后分别比较 p 左边和右边的元素与 i 的大小关系。如果 p 左边的元素比 i 小,则说明 i 在 p 左边的子树中;否则,如果 p 左边的元素比 i 大,则说明 i 在 p 右边的子树中。我们可以根据这个判断,将 p 指向对应的子树中,并重复上述步骤,直到找到结点 i。

3.将堆顶元素(即 p 指向的元素)与结点 i 交换位置。

4.调整堆,使得交换后的堆仍满足堆的性质。具体来说,我们可以从 p 开始,依次向下调整堆,直到调整到叶子节点为止。

由于使用二分查找的方法,每次查找都可以将查找范围缩小一半,因此,对于一个包含 n 个元素的堆,最多需要进行 logn 次查找。而且,在调整堆的过程中,我们只需要对涉及到的元素进行交换和调整,因此,总的时间复杂度为 O(lgn)。

因此,我们可以设计一个能够在 O(lgn) 时间内完成的 HEAP-DELETE 操作,具体实现如下:

void heap_delete(int arr[], int n, int i) {  
   int p = 1, left = 2 * p, right = 2 * p + 1;  
   while (left <= right) {  
       if (left < right && arr[left] < arr[right]) {  
           if (arr[left] > i) {  
               swap(arr[i], arr[left]);  
               p = left;  
           }  
       } else {  
           if (arr[right] < i) {  
               swap(arr[i], arr[right]);  
               p = right;  
           }  
       }  
       adjust_heap(arr, n, p);  
       left = 2 * p, right = 2 * p + 1;  
   }  
}

其中,swap 函数用于交换两个元素,adjust_heap 函数用于调整堆。在 adjust_heap 函数中,我们可以使用递归的方式,从 p 开始,依次向下调整堆,直到调整到叶子节点为止。具体来说,我们可以依次对左右子树进行调整,如果左子树的深度小于右子树的深度,则将左子树作为当前节点的子树,否则将右子树作为当前节点的子树。在调整子树的过程中,我们只需要对涉及到的元素进行交换和调整,直到子树满足堆的性质为止。

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_chatgpt_05

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_chatgpt_06

通义千问:

可以采用双向链表来维护堆结构,同时利用堆的特性保证删除操作的时间复杂度为 O(lgn)。

具体实现如下:

1.定义一个结点类 Node,包含结点的值和指向左右子结点的指针。

2.定义一个双向链表 Head,表示堆的根结点。将 Head 指向的结点标记为堆顶结点。

3.在插入结点时,先将新结点插入到双向链表的末尾,然后进行向下调整,使新结点成为堆顶结点。

4.在删除结点时,先将堆顶结点指向删除结点的右子结点,然后将删除结点的左子结点指向堆顶结点,最后进行向下调整,使堆保持堆的特性。

代码如下:

class Node:
    def __init__(self, val):
        self.val = val
        self.left = None
        self.right = None

class Heap:
    def __init__(self):
        self.head = None

    def heapify(self, node, i):
        largest = node
        l = 2 * i + 1
        r = 2 * i + 2

        # 找到左右子结点,并比较大小
        if l < len(self) and self[l].val > largest.val:
            largest = self[l]
        if r < len(self) and self[r].val > largest.val:
            largest = self[r]

        # 如果当前结点大于最大结点,则交换位置,并进行向下调整
        if largest != node:
            self[largest.val, :].left = node
            node.left = self[largest, :]
            self[largest, :].right = node
            node.right = self[largest, :]

            # 如果左子结点存在,则进行向下调整
            if l < len(self) and self[l].val > node.val:
                self.heapify(self[l], l)

            # 如果右子结点存在,则进行向下调整
            if r < len(self) and self[r].val > node.val:
                self.heapify(self[r], r)

    def insert(self, val):
        new_node = Node(val)

        # 如果堆为空,则创建一个新的堆
        if not self.head:
            self.head = new_node
            new_node.left = new_node.right = None
            return

        # 将新结点插入到双向链表的末尾
        new_node.left = self.head
        self.head.right = new_node

        # 进行向下调整,使新结点成为堆顶结点
        self.heapify(new_node, 0)

    def delete(self, val):
        # 定位删除结点的位置
        i = self.search(val)

        # 如果删除结点不存在,则返回空
        if i == -1:
            return

        # 将堆顶结点指向删除结点的右子结点
        self.head.left = self[i].right

        # 将删除结点的左子结点指向堆顶结点
        self[i].left = self.head

        # 进行向下调整,使堆保持堆的特性
        self.heapify(self.head, 0)

    def search(self, val):
        # 遍历整个堆,查找是否存在该结点
        for i in range(len(self) - 1, -1, -1):
            if self[i].val == val:
                return i
        return -1

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_算法_07

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_chatgpt_08

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_chatgpt_09

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_chatgpt_10

天工:

要在O(lgn)时间内完成堆删除操作,可以使用以下方法:

1.将堆的根节点移到堆的最后一个位置。

2.将堆的最后一个元素删除。

3.如果堆的最后一个元素是根节点,那么将根节点移到堆的倒数第二个位置。

4.如果堆的最后一个元素不是根节点,那么将根节点移到堆的倒数第二个位置。

这个方法的时间复杂度为O(lgn),因为每次删除一个元素后,堆的大小减少了1,所以删除n个元素需要执行n次操作,每次操作需要O(lgn)的时间,因此总时间复杂度为O(nlgn)。

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_文心一言_11

chatgpt:

要设计一个能够在 O(lgn) 时间内完成 HEAP-DELETE 操作,可以按照以下步骤进行:

1.首先,将要删除的节点与堆的最后一个节点进行交换。这样做可以保持堆的完全性质。

  • 将堆中第 i 个节点与最后一个节点进行交换。

2.接下来,调整交换后的堆,使其仍然满足堆的性质。

  • 如果交换后的节点比其父节点更小(对于最小堆)或者更大(对于最大堆),则需要将该节点向上移动。
  • 如果交换后的节点比其子节点更大(对于最大堆)或者更小(对于最小堆),则需要将该节点向下移动。

3.重复步骤 2,直到堆的性质被恢复。

下面是一个示例的实现(使用 Python):

def heap_delete(A, i):
    n = len(A)
    if i < 0 or i >= n:
        return A  # 如果 i 不在有效范围内,直接返回原堆

    A[i], A[n-1] = A[n-1], A[i]  # 交换要删除的节点与最后一个节点

    # 向上调整
    while i > 0 and A[i] < A[(i-1)//2]:
        A[i], A[(i-1)//2] = A[(i-1)//2], A[i]
        i = (i-1)//2

    # 向下调整
    while True:
        left = 2*i + 1
        right = 2*i + 2
        smallest = i

        if left < n and A[left] < A[smallest]:
            smallest = left
        if right < n and A[right] < A[smallest]:
            smallest = right

        if smallest != i:
            A[i], A[smallest] = A[smallest], A[i]
            i = smallest
        else:
            break

    return A[:-1]  # 返回删除节点后的堆(去掉最后一个节点)

该实现通过不断地向上调整和向下调整的过程,保持了堆的性质,并且在最坏情况下的时间复杂度为 O(lgn)。

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_开发语言_12

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_chatgpt_13

总结

文心一言 VS 讯飞星火 VS chatgpt (69)-- 算法导论6.5 8题_chatgpt_14


标签:结点,删除,val,--,self,VS,文心,heap,节点
From: https://blog.51cto.com/moonfdd/6992567

相关文章

  • MongoDB 3 主从复制配置
    #下载wgethttp://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel62-3.0.4.tgz#解压tarzxvfmongodb-linux-x86_64-rhel62-3.0.4.tgzmv/root/mongodb-linux-x86_64-rhel62-3.0.4/usr/local/mongodb#创建目录和日志文件mkdir/usr/local/mongodb/datatouch/usr/loc......
  • MongoDB安装部署、集群和分片
    MongoDB安装部署、集群和分片目录一、    Mongo安装、启动和关闭1. MongoDB安装下载MongoDB压缩包 解压tar–zxvfmongodb-linux-x86_64-rhel62-3.2.4.tgz将解压包拷贝到指定目录Mvmongodb-linux-x86_64-rhel62-3.2.4 /usr/local/mongodb在~/.bashrc添加exportPATH=/u......
  • PPT| 企业级建模详细方法P77
    PPT共77页,由于篇幅有限,以下为部分资料.......
  • ppt快捷方式
    ppt1.shift+mouse1.平行或垂直移动2.等比例缩放2.ctrl1.+鼠标滚轮:快速放大2.+鼠标移动:移动复制3.+D:快速复制4.+M:新建页面5.+G:组合6.+Y:恢复7.+N:快速创建一个ppt3.ctrl+shift1.ctrl+shift:平行或垂直+移动复制2.+alt:等比例中心放大3.+c/v:复制/粘贴格式4.+G:解除组......
  • 碰撞检测方案分析选用
     反馈的问题(背景)碰撞检测:传感器:激光雷达、气压检测、超声传感器、动作开关场景:水雾大,锈渣多,检测范围1米自由度限制:铰接自由度限制坠落原因:车轮侧面碰撞坞敦,铰接顶起车轮,磁力减少,机器人坠落。传感器及应用1、激光雷达(红外测距)(毫米波雷达)(超声波雷达)2、气压检测3、超声......
  • 高效控制轨道——显示独奏锁定声音开关
    先新建一个合成新建纯色层用工具画一个椭圆我们惊奇的发现,这变成一个蒙版了是因为在使图案工具的时候不能选中选中敲回车可以改名称小眼睛就是是否看见第一个是独奏开关,就是只看这个第二个按钮是锁的按钮,选中边上的元素时,可能会误选,可以锁住就好了前面有个音乐的按......
  • 键盘事件
         ......
  • 服务器相关配置
    服务器相关配置地址:www.zhangqihao.cn服务列表网站:index.zhangqihao.cnVPN例如数据库等服务因安全因素未暴露到公网,所以需要挂vpn访问内网OpenVPN客户端在SynologyDrive上的位置为:团队文件夹/Repository/群晖软件/OpenVPN-2.6.5OpenVPN配置文件在SynologyDrive上的位......
  • TinyMCE 图片粘贴上传,实现图文粘贴,图片自动上传
    ​如何做到ueditor批量上传word图片?1、前端引用代码<!DOCTYPE html PUBLIC "-//W3C//DTDXHTML1.0Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head>......
  • IDA pro 多选快捷键
    StartselectionAlt+LGotothestartofthedatabase(Ctrl+PgUp);Gototheend(Ctrl+PgDn).Igor’stipoftheweek#04:Moreselection!......