格雷编码
当 n=0 时,格雷码序列为 [0]。
将n-1编码翻转,翻转部分的n-1位设置位1, 获得n位编码。
霍夫曼编码
那么为什么通过哈夫曼编码后得到的二进制码不会有前缀的问题呢?
这是因为在哈夫曼树中,每个字母对应的节点都是叶子节点,而他们对应的二进制码是由根节点到各自节点的路径所决定的,正因为是叶子节点,每个节点的路径不可能和其他节点有前缀的关系。(联想前缀树)
为什么通过哈夫曼编码获得的二进制码短呢?
因为哈夫曼树是带权路径长度最短的树,权值较大的节点离根节点较近。而带权路径长度是指:树中所有的叶子节点的权值乘上其到根节点的路径长度,这与最终的哈夫曼编码总长度成正比关系的。对于第二种方式的编码,我们也可以按0左1右的规则构成一棵二叉树,但显然他没有按权值高的节点离根节点近的原则去构建二叉树,带权路径长度更长,二进制码也更长。
————————————————
版权声明:本文为CSDN博主「von Libniz」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Demon_LMMan/article/details/115789360
参考链接
格雷编码
哈夫曼编码(Huffman Coding)多图详细解析