#!/usr/bin/env python
from __future__ import print_function
import logging
import re
import sys
from lxml.etree import tounicode
from lxml.etree import _ElementTree
from lxml.html import document_fromstring
from lxml.html import fragment_fromstring
from lxml.html import HtmlElement
from .cleaners import clean_attributes
from .cleaners import html_cleaner
from .htmls import build_doc
from .htmls import get_body
from .htmls import get_title
from .htmls import get_author
from .htmls import shorten_title
from .compat import str_, bytes_, tostring_, pattern_type
from .debug import describe, text_content
log = logging.getLogger("readability.readability")
# 但是根据代码来看,【肯定】和【可能】的意思是反着的
# 肯定的正面或者负面类名只是加减权重
# 可能的正面类名会保留,负面类名会被移除
REGEXES = {
# 可能的负面类名
"unlikelyCandidatesRe": re.compile(
r"combx|comment|community|disqus|extra|foot|header|menu|remark|rss|shoutbox|sidebar|sponsor|ad-break|agegate|pagination|pager|popup|tweet|twitter",
re.I,
),
# 可能的正面类名
"okMaybeItsACandidateRe": re.compile(r"and|article|body|column|main|shadow", re.I),
# 肯定的正面类型
"positiveRe": re.compile(
r"article|body|content|entry|hentry|main|page|pagination|post|text|blog|story",
re.I,
),
# 肯定的负面类名
"negativeRe": re.compile(
r"combx|comment|com-|contact|foot|footer|footnote|masthead|media|meta|outbrain|promo|related|scroll|shoutbox|sidebar|sponsor|shopping|tags|tool|widget",
re.I,
),
# 如果`<div>`不包含以下元素,应该转换为`<p>`
"divToPElementsRe": re.compile(
r"<(a|blockquote|dl|div|img|ol|p|pre|table|ul)", re.I
),
#'replaceBrsRe': re.compile(r'(<br[^>]*>[ \n\r\t]*){2,}',re.I),
#'replaceFontsRe': re.compile(r'<(\/?)font[^>]*>',re.I),
#'trimRe': re.compile(r'^\s+|\s+$/'),
#'normalizeRe': re.compile(r'\s{2,}/'),
#'killBreaksRe': re.compile(r'(<br\s*\/?>(\s| ?)*){1,}/'),
"videoRe": re.compile(r"https?:\/\/(www\.)?(youtube|vimeo)\.com", re.I),
# skipFootnoteLink: /^\s*(\[?[a-z0-9]{1,2}\]?|^|edit|citation needed)\s*$/i,
}
class Unparseable(ValueError):
pass
# 将字体大小文本转为整数
def to_int(x):
if not x:
return None
x = x.strip()
# 如果单位是 px 直接返回数值
if x.endswith("px"):
return int(x[:-2])
# 如果是 em 就乘 12
if x.endswith("em"):
return int(x[:-2]) * 12
return int(x)
def clean(text):
# Many spaces make the following regexes run forever
# 将超过 255 的空白字符,替换为 255 个空格
text = re.sub(r"\s{255,}", " " * 255, text)
# 移除行前后的空格
text = re.sub(r"\s*\n\s*", "\n", text)
# 将制表符替换为空格,连续两个以后空格替换为单个空格
text = re.sub(r"\t|[ \t]{2,}", " ", text)
return text.strip()
# 返回整洁版的长度
def text_length(i):
return len(clean(i.text_content() or ""))
# 获取匹配指定元素的模式对象
def compile_pattern(elements):
if not elements:
return None
elif isinstance(elements, pattern_type):
# 如果输入已经是模式对象,直接返回
return elements
elif isinstance(elements, (str_, bytes_)):
# 如果输入是字节串或者字符串
# 先把字节串转换为字符串,以便下一步处理
if isinstance(elements, bytes_):
elements = str_(elements, "utf-8")
# 再把字符串按照逗号分割,以便下一步处理
elements = elements.split(u",")
# 如果输入是列表或者元素
# 将他们用`|`连在一起构造模式串
if isinstance(elements, (list, tuple)):
return re.compile(u"|".join([re.escape(x.strip()) for x in elements]), re.U)
else:
# 如果以上情况都不符合,抛异常
raise Exception("Unknown type for the pattern: {}".format(type(elements)))
# assume string or string like object
class Document:
"""Class to build a etree document out of html."""
def __init__(
self,
input,
positive_keywords=None,
negative_keywords=None,
url=None,
min_text_length=25,
retry_length=250,
xpath=False,
handle_failures="discard",
):
"""Generate the document
:param input: string of the html content.
:param positive_keywords: regex, list or comma-separated string of patterns in classes and ids
:param negative_keywords: regex, list or comma-separated string in classes and ids
:param min_text_length: Tunable. Set to a higher value for more precise detection of longer texts.
:param retry_length: Tunable. Set to a lower value for better detection of very small texts.
:param xpath: If set to True, adds x="..." attribute to each HTML node,
containing xpath path pointing to original document path (allows to
reconstruct selected summary in original document).
:param handle_failures: Parameter passed to `lxml` for handling failure during exception.
Support options = ["discard", "ignore", None]
Examples:
positive_keywords=["news-item", "block"]
positive_keywords=["news-item, block"]
positive_keywords=re.compile("news|block")
negative_keywords=["mysidebar", "related", "ads"]
The Document class is not re-enterable.
It is designed to create a new Document() for each HTML file to process it.
API methods:
.title() -- full title
.short_title() -- cleaned up title
.content() -- full content
.summary() -- cleaned up content
"""
# 将参数赋给属性
# 要处理的 HTML 文本或者节点
self.input = input
# 解析后的文档节点(不知道为啥不叫`doc`)
self.html = None
# 文档编码
self.encoding = None
# 自定义的正面和负面类名
self.positive_keywords = compile_pattern(positive_keywords)
self.negative_keywords = compile_pattern(negative_keywords)
# URL,补链接用的
self.url = url
# 最小文本长度,决定是不是要丢弃节点
self.min_text_length = min_text_length
# 文本重试长度,结果小于这个值会重试
self.retry_length = retry_length
self.xpath = xpath
self.handle_failures = handle_failures
def _html(self, force=False):
# 如果强制更新,或者`html`属性为空
if force or self.html is None:
# 将`input`解析为文档树,保存到`html`
self.html = self._parse(self.input)
if self.xpath:
# 如果缓存 XPATH
root = self.html.getroottree()
# 对于根节点的每个子节点
# 将`x`属性设为 XPATH
for i in self.html.getiterator():
# print root.getpath(i)
i.attrib["x"] = root.getpath(i)
return self.html
# 将输入解析为文档树
def _parse(self, input):
# 如果输入已经是文档树了
# 不做处理,编码设为默认值
if isinstance(input, (_ElementTree, HtmlElement)):
doc = input
self.encoding = 'utf-8'
else:
# 否则将输入解析为文档树
doc, self.encoding = build_doc(input)
# 对文档树执行清理
doc = html_cleaner.clean_html(doc)
# 如果文档的 URL 是已知的
base_href = self.url
if base_href:
# trying to guard against bad links like <a href="http://[http://...">
try:
# such support is added in lxml 3.3.0
# 将所有链接变成绝对链接
# 也就是计算`join(base, link)`
doc.make_links_absolute(
base_href,
resolve_base_href=True,
handle_failures=self.handle_failures,
)
except TypeError: # make_links_absolute() got an unexpected keyword argument 'handle_failures'
# then we have lxml < 3.3.0
# please upgrade to lxml >= 3.3.0 if you're failing here!
# 和上面一样不知道啥情况
doc.make_links_absolute(
base_href,
resolve_base_href=True,
handle_failures=self.handle_failures,
)
else:
#
doc.resolve_base_href(handle_failures=self.handle_failures)
return doc
# 获取整洁版正文
def content(self):
"""Returns document body"""
return get_body(self._html(True))
# 获取标题
def title(self):
"""Returns document title"""
return get_title(self._html(True))
# 获取作者
def author(self):
"""Returns document author"""
return get_author(self._html(True))
# 获取简短标题
def short_title(self):
"""Returns cleaned up document title"""
return shorten_title(self._html(True))
# 获取文档树的 HTML并移除不良属性
def get_clean_html(self):
"""
An internal method, which can be overridden in subclasses, for example,
to disable or to improve DOM-to-text conversion in .summary() method
"""
return clean_attributes(tounicode(self.html, method="html"))
# 获取文章(正文中的文章)
def summary(self, html_partial=False):
"""
Given a HTML file, extracts the text of the article.
:param html_partial: return only the div of the document, don't wrap
in html and body tags.
Warning: It mutates internal DOM representation of the HTML document,
so it is better to call other API methods before this one.
"""
try:
ruthless = True
while True:
# 解析 HTML
self._html(True)
# 移除所有`<script>`和`<style>`
for i in self.tags(self.html, "script", "style"):
i.drop_tree()
# 给`<body>`添加 ID
for i in self.tags(self.html, "body"):
i.set("id", "readabilityBody")
# 移除带有可能的负面名称的节点
if ruthless:
self.remove_unlikely_candidates()
# 将误用的`<div>`转换为`<p>`
self.transform_misused_divs_into_paragraphs()
# 给段落打分获取候选节点
candidates = self.score_paragraphs()
# 按照内容得分选出最佳候选
best_candidate = self.select_best_candidate(candidates)
if best_candidate:
# 如果存在最佳候选,获取它的内容作为文章
article = self.get_article(
candidates, best_candidate, html_partial=html_partial
)
else:
# 否则,不移除带有可能的负面名称的节点,再次尝试
if ruthless:
log.info("ruthless removal did not work. ")
ruthless = False
log.debug(
(
"ended up stripping too much - "
"going for a safer _parse"
)
)
# try again
continue
else:
# 如果尝试过了,就直接将`<body>`的内容作为文章
log.debug(
(
"Ruthless and lenient parsing did not work. "
"Returning raw html"
)
)
article = self.html.find("body")
# 如果`<body>`也找不到,就直接将输入文本作为文章
if article is None:
article = self.html
# 对文章执行整理
cleaned_article = self.sanitize(article, candidates)
# 获取文章长度
article_length = len(cleaned_article or "")
retry_length = self.retry_length
# 如果文章长度不够,并且删除可能的负面类名,就重试
of_acceptable_length = article_length >= retry_length
if ruthless and not of_acceptable_length:
ruthless = False
# Loop through and try again.
continue
else:
# 否则直接返回
return cleaned_article
except Exception as e:
log.exception("error getting summary: ")
if sys.version_info[0] == 2:
from .compat.two import raise_with_traceback
else:
from .compat.three import raise_with_traceback
raise_with_traceback(Unparseable, sys.exc_info()[2], str_(e))
# 查看最佳候选的兄弟节点,有没有什么遗漏的
def get_article(self, candidates, best_candidate, html_partial=False):
# Now that we have the top candidate, look through its siblings for
# content that might also be related.
# Things like preambles, content split by ads that we removed, etc.
sibling_score_threshold = max([10, best_candidate["content_score"] * 0.2])
# create a new html document with a html->body->div
# 创建一个`<div>`容器,包含结果文本
if html_partial:
output = fragment_fromstring("<div/>")
else:
output = document_fromstring("<div/>")
# 获取最佳候选的所有兄弟节点
best_elem = best_candidate["elem"]
parent = best_elem.getparent()
siblings = parent.getchildren() if parent is not None else [best_elem]
# 遍历兄弟节点
for sibling in siblings:
# in lxml there no concept of simple text
# if isinstance(sibling, NavigableString): continue
append = False
# 如果遍历到了最佳候选,把它加进结果中
if sibling is best_elem:
append = True
# 如果兄弟节点在候选集里面,并且内容得分大于阈值
# 加进结果中
sibling_key = sibling # HashableElement(sibling)
if (
sibling_key in candidates
and candidates[sibling_key]["content_score"] >= sibling_score_threshold
):
append = True
if sibling.tag == "p":
link_density = self.get_link_density(sibling)
node_content = sibling.text or ""
node_length = len(node_content)
# 如果兄弟节点是`<p>`,长度大于 80
# 且链接密度小于 0.25
# 加进结果中
if node_length > 80 and link_density < 0.25:
append = True
elif (
node_length <= 80
and link_density == 0
and re.search(r"\.( |$)", node_content)
):
# 如果长度小于等于 80,没有链接,并且以句号结尾
# 加进结果中
append = True
if append:
# We don't want to append directly to output, but the div
# in html->body->div
if html_partial:
output.append(sibling)
else:
output.getchildren()[0].getchildren()[0].append(sibling)
# if output is not None:
# output.append(best_elem)
return output
# 选择最佳候选
def select_best_candidate(self, candidates):
if not candidates:
return None
# 将候选元素按照内容得分倒序排序
sorted_candidates = sorted(
candidates.values(), key=lambda x: x["content_score"], reverse=True
)
# 取前五个输出内容得分
for candidate in sorted_candidates[:5]:
elem = candidate["elem"]
log.debug("Top 5 : %6.3f %s" % (candidate["content_score"], describe(elem)))
# 取第一个作为最佳候选
best_candidate = sorted_candidates[0]
return best_candidate
# 获取链接密度
def get_link_density(self, elem):
link_length = 0
# 获取所有的`<a>`子元素
# 求和它们的文本长度
for i in elem.findall(".//a"):
link_length += text_length(i)
# if len(elem.findall(".//div") or elem.findall(".//p")):
# link_length = link_length
# 计算链接文本长度除以当前节点文本长度
total_length = text_length(elem)
return float(link_length) / max(total_length, 1)
# 创建候选集并给其中的节点打分
# score = (
# class_weight + name_weight +
# children_comma_count + 1 + min(children_text_len // , 3)
# ) / (1 - link_density)
def score_paragraphs(self):
MIN_LEN = self.min_text_length
candidates = {}
ordered = []
# 遍历每个正文、代码块和表格单元
for elem in self.tags(self._html(), "p", "pre", "td"):
# 获取父节点和祖父节点
parent_node = elem.getparent()
if parent_node is None:
continue
grand_parent_node = parent_node.getparent()
# 获取内部文本,并规范化空白
inner_text = clean(elem.text_content() or "")
inner_text_len = len(inner_text)
# If this paragraph is less than 25 characters
# don't even count it.
# 如果文本长度小于指定长度,跳过
if inner_text_len < MIN_LEN:
continue
# 如果它的父节点不在候选集当中,就添加
if parent_node not in candidates:
candidates[parent_node] = self.score_node(parent_node)
ordered.append(parent_node)
# 如果它的祖父节点不在候选集当中,就添加
if grand_parent_node is not None and grand_parent_node not in candidates:
candidates[grand_parent_node] = self.score_node(grand_parent_node)
ordered.append(grand_parent_node)
# 计算子节点的内容得分,为 1 上句子数量和长度
content_score = 1
content_score += len(inner_text.split(","))
content_score += min((inner_text_len / 100), 3)
# if elem not in candidates:
# candidates[elem] = self.score_node(elem)
# WTF? candidates[elem]['content_score'] += content_score
# 父节点和祖父节点的内容得分加上子节点内容得分
candidates[parent_node]["content_score"] += content_score
if grand_parent_node is not None:
candidates[grand_parent_node]["content_score"] += content_score / 2.0
# Scale the final candidates score based on link density. Good content
# should have a relatively small link density (5% or less) and be
# mostly unaffected by this operation.
for elem in ordered:
# 对于每一个候选节点,将其得分除以`(1 - ld)`
candidate = candidates[elem]
ld = self.get_link_density(elem)
score = candidate["content_score"]
log.debug(
"Branch %6.3f %s link density %.3f -> %6.3f"
% (score, describe(elem), ld, score * (1 - ld))
)
candidate["content_score"] *= 1 - ld
return candidates
# 按照节点类名给节点添加权重
def class_weight(self, e):
weight = 0
# 遍历节点的 ID 和类名
for feature in [e.get("class", None), e.get("id", None)]:
if feature:
# 如果在预定义的正面标签和负面标签中,则加减权重
if REGEXES["negativeRe"].search(feature):
weight -= 25
if REGEXES["positiveRe"].search(feature):
weight += 25
# 如果在自定义的正面标签和负面标签中,则加减权重
if self.positive_keywords and self.positive_keywords.search(feature):
weight += 25
if self.negative_keywords and self.negative_keywords.search(feature):
weight -= 25
# 如果自定义标签中出现了`tag-{e.tag}`,则加减权重
if self.positive_keywords and self.positive_keywords.match("tag-" + e.tag):
weight += 25
if self.negative_keywords and self.negative_keywords.match("tag-" + e.tag):
weight -= 25
return weight
# 按照节点名称给节点打分
# score_node = class_weight + name_weight
def score_node(self, elem):
content_score = self.class_weight(elem)
# 获取节点名称
name = elem.tag.lower()
if name in ["div", "article"]:
# 这两个分数加五,因为很可能是正文
content_score += 5
elif name in ["pre", "td", "blockquote"]:
# 这两个也有可能正文,不过现在一般人不会这么干了
content_score += 3
elif name in ["address", "ol", "ul", "dl", "dd", "dt", "li", "form", "aside"]:
# 这些是正文里的元素,而不是正文本身
content_score -= 3
elif name in [
"h1",
"h2",
"h3",
"h4",
"h5",
"h6",
"th",
"header",
"footer",
"nav",
]:
# 这些是正文里的元素,而不是正文本身
content_score -= 5
return {"content_score": content_score, "elem": elem}
# 移除不可能的候选
def remove_unlikely_candidates(self):
for elem in self.html.findall(".//*"):
s = "%s %s" % (elem.get("class", ""), elem.get("id", ""))
if len(s) < 2:
continue
if (
REGEXES["unlikelyCandidatesRe"].search(s)
and (not REGEXES["okMaybeItsACandidateRe"].search(s))
and elem.tag not in ["html", "body"]
):
log.debug("Removing unlikely candidate - %s" % describe(elem))
elem.drop_tree()
def transform_misused_divs_into_paragraphs(self):
# 获取所有`<div>`元素
for elem in self.tags(self.html, "div"):
# transform <div>s that do not contain other block elements into
# <p>s
# FIXME: The current implementation ignores all descendants that
# are not direct children of elem
# This results in incorrect results in case there is an <img>
# buried within an <a> for example
# 如果元素不包含指定元素
# 将其改为`<p>`
if not REGEXES["divToPElementsRe"].search(
str_(b"".join(map(tostring_, list(elem))))
):
# log.debug("Altering %s to p" % (describe(elem)))
elem.tag = "p"
# print "Fixed element "+describe(elem)
# 对于剩下的每个`<div>`,创建一个`<p>`
# 把内容放在`<p>`中,再把它放在`<div>`中
for elem in self.tags(self.html, "div"):
if elem.text and elem.text.strip():
p = fragment_fromstring("<p/>")
p.text = elem.text
elem.text = None
elem.insert(0, p)
# print "Appended "+tounicode(p)+" to "+describe(elem)
# 倒序遍历`<div>`子节点
for pos, child in reversed(list(enumerate(elem))):
# 获取子节点与下个子节点之间的文本
if child.tail and child.tail.strip():
# 如果有的话,放入`<p>`中,插回原来的文职
p = fragment_fromstring("<p/>")
p.text = child.tail
child.tail = None
elem.insert(pos + 1, p)
# print "Inserted "+tounicode(p)+" to "+describe(elem)
# 移除所有`<br>`
if child.tag == "br":
# print 'Dropped <br> at '+describe(elem)
child.drop_tree()
# 获取当前节点下指定名称的子节点
def tags(self, node, *tag_names):
for tag_name in tag_names:
for e in node.findall(".//%s" % tag_name):
yield e
# 和上一些一样,只不过是反着的
def reverse_tags(self, node, *tag_names):
for tag_name in tag_names:
for e in reversed(node.findall(".//%s" % tag_name)):
yield e
# 整理文章
def sanitize(self, node, candidates):
MIN_LEN = self.min_text_length
for header in self.tags(node, "h1", "h2", "h3", "h4", "h5", "h6"):
if self.class_weight(header) < 0 or self.get_link_density(header) > 0.33:
header.drop_tree()
for elem in self.tags(node, "form", "textarea"):
elem.drop_tree()
for elem in self.tags(node, "iframe"):
if "src" in elem.attrib and REGEXES["videoRe"].search(elem.attrib["src"]):
elem.text = "VIDEO" # ADD content to iframe text node to force <iframe></iframe> proper output
else:
elem.drop_tree()
allowed = {}
# Conditionally clean <table>s, <ul>s, and <div>s
for el in self.reverse_tags(
node, "table", "ul", "div", "aside", "header", "footer", "section"
):
if el in allowed:
continue
weight = self.class_weight(el)
if el in candidates:
content_score = candidates[el]["content_score"]
# print '!',el, '-> %6.3f' % content_score
else:
content_score = 0
tag = el.tag
if weight + content_score < 0:
log.debug(
"Removed %s with score %6.3f and weight %-3s"
% (describe(el), content_score, weight,)
)
el.drop_tree()
elif el.text_content().count(",") < 10:
counts = {}
for kind in ["p", "img", "li", "a", "embed", "input"]:
counts[kind] = len(el.findall(".//%s" % kind))
counts["li"] -= 100
counts["input"] -= len(el.findall('.//input[@type="hidden"]'))
# Count the text length excluding any surrounding whitespace
content_length = text_length(el)
link_density = self.get_link_density(el)
parent_node = el.getparent()
if parent_node is not None:
if parent_node in candidates:
content_score = candidates[parent_node]["content_score"]
else:
content_score = 0
# if parent_node is not None:
# pweight = self.class_weight(parent_node) + content_score
# pname = describe(parent_node)
# else:
# pweight = 0
# pname = "no parent"
to_remove = False
reason = ""
# if el.tag == 'div' and counts["img"] >= 1:
# continue
if counts["p"] and counts["img"] > 1 + counts["p"] * 1.3:
reason = "too many images (%s)" % counts["img"]
to_remove = True
elif counts["li"] > counts["p"] and tag not in ("ol", "ul"):
reason = "more <li>s than <p>s"
to_remove = True
elif counts["input"] > (counts["p"] / 3):
reason = "less than 3x <p>s than <input>s"
to_remove = True
elif content_length < MIN_LEN and counts["img"] == 0:
reason = (
"too short content length %s without a single image"
% content_length
)
to_remove = True
elif content_length < MIN_LEN and counts["img"] > 2:
reason = (
"too short content length %s and too many images"
% content_length
)
to_remove = True
elif weight < 25 and link_density > 0.2:
reason = "too many links %.3f for its weight %s" % (
link_density,
weight,
)
to_remove = True
elif weight >= 25 and link_density > 0.5:
reason = "too many links %.3f for its weight %s" % (
link_density,
weight,
)
to_remove = True
elif (counts["embed"] == 1 and content_length < 75) or counts[
"embed"
] > 1:
reason = (
"<embed>s with too short content length, or too many <embed>s"
)
to_remove = True
elif not content_length:
reason = "no content"
to_remove = True
# if el.tag == 'div' and counts['img'] >= 1 and to_remove:
# imgs = el.findall('.//img')
# valid_img = False
# log.debug(tounicode(el))
# for img in imgs:
#
# height = img.get('height')
# text_length = img.get('text_length')
# log.debug ("height %s text_length %s" %(repr(height), repr(text_length)))
# if to_int(height) >= 100 or to_int(text_length) >= 100:
# valid_img = True
# log.debug("valid image" + tounicode(img))
# break
# if valid_img:
# to_remove = False
# log.debug("Allowing %s" %el.text_content())
# for desnode in self.tags(el, "table", "ul", "div"):
# allowed[desnode] = True
# find x non empty preceding and succeeding siblings
i, j = 0, 0
x = 1
siblings = []
for sib in el.itersiblings():
# log.debug(sib.text_content())
sib_content_length = text_length(sib)
if sib_content_length:
i = +1
siblings.append(sib_content_length)
if i == x:
break
for sib in el.itersiblings(preceding=True):
# log.debug(sib.text_content())
sib_content_length = text_length(sib)
if sib_content_length:
j = +1
siblings.append(sib_content_length)
if j == x:
break
# log.debug(str_(siblings))
if siblings and sum(siblings) > 1000:
to_remove = False
log.debug("Allowing %s" % describe(el))
for desnode in self.tags(el, "table", "ul", "div", "section"):
allowed[desnode] = True
if to_remove:
log.debug(
"Removed %6.3f %s with weight %s cause it has %s."
% (content_score, describe(el), weight, reason)
)
# print tounicode(el)
# log.debug("pname %s pweight %.3f" %(pname, pweight))
el.drop_tree()
else:
log.debug(
"Not removing %s of length %s: %s"
% (describe(el), content_length, text_content(el))
)
self.html = node
return self.get_clean_html()
def main():
VERBOSITY = {1: logging.WARNING, 2: logging.INFO, 3: logging.DEBUG}
from optparse import OptionParser
parser = OptionParser(usage="%prog: [options] [file]")
parser.add_option("-v", "--verbose", action="count", default=0)
parser.add_option(
"-b", "--browser", default=None, action="store_true", help="open in browser"
)
parser.add_option(
"-l", "--log", default=None, help="save logs into file (appended)"
)
parser.add_option(
"-u", "--url", default=None, help="use URL instead of a local file"
)
parser.add_option("-x", "--xpath", default=None, help="add original xpath")
parser.add_option(
"-p",
"--positive-keywords",
default=None,
help="positive keywords (comma-separated)",
action="store",
)
parser.add_option(
"-n",
"--negative-keywords",
default=None,
help="negative keywords (comma-separated)",
action="store",
)
(options, args) = parser.parse_args()
if options.verbose:
logging.basicConfig(
level=VERBOSITY[options.verbose],
filename=options.log,
format="%(asctime)s: %(levelname)s: %(message)s (at %(filename)s: %(lineno)d)",
)
if not (len(args) == 1 or options.url):
parser.print_help()
sys.exit(1)
file = None
if options.url:
headers = {"User-Agent": "Mozilla/5.0"}
if sys.version_info[0] == 3:
import urllib.request, urllib.parse, urllib.error
request = urllib.request.Request(options.url, None, headers)
file = urllib.request.urlopen(request)
else:
import urllib2
request = urllib2.Request(options.url, None, headers)
file = urllib2.urlopen(request)
else:
file = open(args[0], "rt")
try:
doc = Document(
file.read(),
url=options.url,
positive_keywords=options.positive_keywords,
negative_keywords=options.negative_keywords,
)
if options.browser:
from .browser import open_in_browser
result = "<h2>" + doc.short_title() + "</h2><br/>" + doc.summary()
open_in_browser(result)
else:
enc = (
sys.__stdout__.encoding or "utf-8"
) # XXX: this hack could not always work, better to set PYTHONIOENCODING
result = "Title:" + doc.short_title() + "\n" + doc.summary()
if sys.version_info[0] == 3:
print(result)
else:
print(result.encode(enc, "replace"))
finally:
file.close()
if __name__ == "__main__":
main()
标签:lxml,score,text,self,elem,content,length,源码,readability
From: https://www.cnblogs.com/apachecn/p/17542078.html