首页 > 编程语言 >计算空间物体包围球的两种算法实现

计算空间物体包围球的两种算法实现

时间:2022-09-25 23:14:49浏览次数:83  
标签:DBL maxPoint vi 物体 minPoint 算法 MAX 包围 pointList

1. 概述

在进行二维空间几何运算的之前,往往会用包围盒进行快速碰撞检测,从而筛掉一些无法碰撞到的可能。而在三维中,比较常用的就是包围球了。当然,如何计算包围球是一个问题。

2. 详论

2.1. naive算法

一个最简单的思路就是,计算空间顶点在X、Y、Z方向上的最大值和最小值,那么就可以得到8个顶点组成的包围盒。取包围球中心为包围盒中心点,而包围球半径有的人认为可以取中心点到八个顶点的最大距离——这样其实并不严密。最好还是计算中心点到所有顶点距离的最大值:

void BoundingSphere::GetBoundingSphereNative(const std::vector<Vec3d>& pointList)
{
    if (pointList.empty())
    {
        return;
    }

    Vec3d minPoint(DBL_MAX, DBL_MAX, DBL_MAX);
    Vec3d maxPoint(-DBL_MAX, -DBL_MAX, -DBL_MAX);

    size_t vertexCount = pointList.size();
    for (size_t vi = 0; vi < vertexCount; vi++)
    {
        if (minPoint.x() > pointList[vi].x())
        {
            minPoint.x() = pointList[vi].x();
        }

        if (minPoint.y() > pointList[vi].y())
        {
            minPoint.y() = pointList[vi].y();
        }

        if (minPoint.z() > pointList[vi].z())
        {
            minPoint.z() = pointList[vi].z();
        }

        if (maxPoint.x() < pointList[vi].x())
        {
            maxPoint.x() = pointList[vi].x();
        }

        if (maxPoint.y() < pointList[vi].y())
        {
            maxPoint.y() = pointList[vi].y();
        }

        if (maxPoint.z() < pointList[vi].z())
        {
            maxPoint.z() = pointList[vi].z();
        }
    }

    Vec3d naiveCenter = (maxPoint + minPoint) / 2;
    double naiveRadius = 0;
    for (size_t vi = 0; vi < vertexCount; vi++)
    {
        naiveRadius = std::max(naiveRadius, (pointList[vi] - naiveCenter).length());
    }
    data = { naiveCenter.x(), naiveCenter.y(), naiveCenter.z(), naiveRadius };
}

这个算法的思路比较简单,所以称之为naive算法。

2.2. ritter算法

另外一种算法是一个名为ritter提出来的,所以称为ritter算法。

首先计算出X方向上距离最远的两个点,Y方向上距离最远的两个点以及Z方向上距离最远的两个点。以这三个距离最远的范围作为初始直径,这三个距离的中心点作为初始球心。

然后依次遍历所有点,判断点是否在这个包围球内。如果不在,则更新包围球。如下图所示:

imglink1

如果点P在我们的之前得到的包围球之外,那么延长点P与球心O的直线与球相较于T点,很显然,新的直径应该是点T与点P的一半:

\[R_{current} = \frac{|\overrightarrow{PT}|}{2} = \frac{|\overrightarrow{OP}| + |\overrightarrow{OT}|}{2} \]

令点T与点P的中心点为S,也就是新的球心位置。关键就是求向量\(\overrightarrow{OS}\),从而将球心O移动到新的球心S。

显然,向量\(\overrightarrow{OS}\)的距离还是很好求的,只新的包围球半径与之前包围球的半径之差:

\[|\overrightarrow{OS}| = R_{current} - R_{previous} \]

而向量\(\overrightarrow{OP}\)是已知的,根据向量关系,可求得:

\[\overrightarrow{OS} = \frac{|\overrightarrow{OS}|}{|\overrightarrow{OP}|}\overrightarrow{OP} \]

最后将之前的球心O移动向量\(\overrightarrow{OS}\),就是新的包围球的球心位置了。

具体的算法代码实现:

void BoundingSphere::GetBoundingSphereRitter(const std::vector<Vec3d>& pointList)
{
    //
    Vec3d minPoint(DBL_MAX, DBL_MAX, DBL_MAX);
    Vec3d maxPoint(-DBL_MAX, -DBL_MAX, -DBL_MAX);
    size_t minX = 0, minY = 0, minZ = 0;
    size_t maxX = 0, maxY = 0, maxZ = 0;
    size_t vertexCount = pointList.size();

    for (size_t vi = 0; vi < vertexCount; vi++)
    {
        if (minPoint.x() > pointList[vi].x())
        {
            minPoint.x() = pointList[vi].x();
            minX = vi;
        }

        if (minPoint.y() > pointList[vi].y())
        {
            minPoint.y() = pointList[vi].y();
            minY = vi;
        }

        if (minPoint.z() > pointList[vi].z())
        {
            minPoint.z() = pointList[vi].z();
            minZ = vi;
        }

        if (maxPoint.x() < pointList[vi].x())
        {
            maxPoint.x() = pointList[vi].x();
            maxX = vi;
        }

        if (maxPoint.y() < pointList[vi].y())
        {
            maxPoint.y() = pointList[vi].y();
            maxY = vi;
        }

        if (maxPoint.z() < pointList[vi].z())
        {
            maxPoint.z() = pointList[vi].z();
            maxZ = vi;
        }
    }

    //
    double maxLength2 = (pointList[maxX] - pointList[minX]).length2();
    Vec3d min = pointList[minX];
    Vec3d max = pointList[maxX];
    {
        double yMaxLength2 = (pointList[maxY] - pointList[minY]).length2();
        if (maxLength2 < yMaxLength2)
        {
            maxLength2 = yMaxLength2;
            min = pointList[minY];
            max = pointList[maxY];
        }

        double zMaxLength2 = (pointList[maxZ] - pointList[minZ]).length2();
        if (maxLength2 < zMaxLength2)
        {
            maxLength2 = zMaxLength2;
            min = pointList[minZ];
            max = pointList[maxZ];
        }
    }

    //
    Vec3d ritterCenter = (min + max) / 2;
    double ritterRadius = sqrt(maxLength2) / 2;
    for (size_t i = 0; i < vertexCount; i++)
    {
        Vec3d d = pointList[i] - ritterCenter;
        double dist2 = d.length2();

        if (dist2 > ritterRadius * ritterRadius)
        {
            double dist = sqrt(dist2);
            double newRadious = (dist + ritterRadius) * 0.5;
            double k = (newRadious - ritterRadius) / dist;
            ritterRadius = newRadious;

            Vec3d temp = d * k;
            ritterCenter = ritterCenter + temp;
        }
    }

    data = { ritterCenter.x(), ritterCenter.y(), ritterCenter.z(), ritterRadius };
}

2.3. 其他

理论上来说,ritter算法的实现要优于naive算法,能够得到更加贴合的包围球。当然理论只是理论,具体的实现还要看最终的效果。根据文献2中所说,经过Cesium的比对测试,19%的情况下,ritter算法的效果比naive算法差;11%的情况下,ritter算法的效果会比naive算法好。所以在Cesium中,包围球的实现是把两者都实现了一遍,然后取半径较小的结果。

3. 参考

  1. 3D空间包围球(Bounding Sphere)的求法
  2. Cesium原理篇:3最长的一帧之地形(2:高度图)

标签:DBL,maxPoint,vi,物体,minPoint,算法,MAX,包围,pointList
From: https://www.cnblogs.com/charlee44/p/16729328.html

相关文章

  • MySQL的join算法优化
    在Mysql的实现中,Nested-LoopJoin有3种实现的算法:SimpleNested-LoopJoin:SNLJ,简单嵌套循环连接IndexNested-LoopJoin:INLJ,索引嵌套循环连接BlockNested-LoopJoin:BN......
  • 智能优化算法——鲸鱼优化算法(WOA) MATLAB算法实现
    智能优化算法——鲸鱼优化算法(WOA)Main%_________________________________________________________________________%---智能优化算法---......
  • 埃拉托斯特尼筛法——求1-n内质数个数的最快算法
    埃拉托斯特尼筛法,简称埃氏筛或爱氏筛,是一种由希腊数学家埃拉托斯特尼所提出的一种简单检定素数的算法。要得到自然数n以内的全部素数,必须把不大于根号n的所有素数的倍数......
  • 算法与数据结构--有效数独
    classSolution{public:boolisValidSudoku(vector<vector<char>>&board){introws[9][9];//建造一个二维数组,记录行intcolumns[9][9];//建......
  • 推荐系统:技术、评估及高效算法 pdf
    高清扫描版下载链接:https://pan.baidu.com/s/1MpDkvw16U1E5O6OuVBY3Ow点击这里获取提取码 ......
  • KMP算法,BF算法
    串、BF算法、KMP算法概述需要掌握:1、串的相关概念,串与线性表之间的异同2、顺序串,和链串中串的基本的基本运算算法设计3、模式匹配算法BF、和KMP算法串......
  • 排序算法
    内部排序这里先介绍一个概念,算法稳定性算法稳定性--假设在数列中存在a[i]=a[j],若在排序之前,a[i]在a[j]前面;并且排序之后,a[i]仍然在a[j]前面。则这个排序算法是稳定的!......
  • 算法练习-第四天【链表】
    链表24.两两交换链表中的节点参考:代码随想录24.两两交换链表中的节点看完题目的第一想法两两交换链表中的节点其实就是改变链表节点之间的指针将第二个节点的Next......
  • UKF和EKF算法在非线性系统中的应用比较
    参考内容:书籍《卡尔曼滤波原理及应用------matlab仿真》这本书对kalman算法的解析很清晰,MATLAB程序很全,适合初学者(如有侵权,请联系删除(qq:1491967912))之前学习了EKF算法和......
  • 算法 玩转数据结构 2-4 数组中查询元素和修改元素
    1重点关注1.1toString方法范式参考coding 1.2coding 2课程内容coding 3Coding3.1coding看4packagecom.......