基于嵌入的方法使用知识图谱中的信息来丰富用户或项目的表示,通过知识图谱嵌入将知识图谱中的实体和关系表征为低维向量,保留了知识图谱原有的结构。
知识图谱通常存在链接缺失问题,这限制了知识图谱在相关下游任务中的应用。为解决该问题,知识图谱补全任务应运而生。知识图谱补全旨在根据知识图谱中已有事实推断出新的事实,从而使得知识图谱更完整。知识图谱嵌入 (Knowledge Graph Embedding) 是解决知识图谱补全问题的重要方法之一,它通过将知识图谱中的实体 (Entity) 和关系 (Relation) 嵌入到连续向量空间,从而在方便计算的同时保留知识图谱中的结构信息。
三类模型:
- 基于距离的模型 (Distance-based Models)
- 双线性模型 (Bilinear Models)
- 神经网络模型 (Neural Network Models)