首页 > 编程语言 >代码随想录算法训练营第二十一天|LeetCode 530.二叉搜索树的最小绝对差、LeetCode 501.二叉搜索树中的众数、LeetCode 236. 二叉树的最近公共祖先。

代码随想录算法训练营第二十一天|LeetCode 530.二叉搜索树的最小绝对差、LeetCode 501.二叉搜索树中的众数、LeetCode 236. 二叉树的最近公共祖先。

时间:2023-02-09 21:58:05浏览次数:74  
标签:right NULL 节点 搜索 result 二叉 root LeetCode left

530. 二叉搜索树的最小绝对差

文章:代码随想录 (programmercarl.com)

视频:二叉搜索树中,需要掌握如何双指针遍历!| LeetCode:530.二叉搜索树的最小绝对差_哔哩哔哩_bilibili

思路:

题目中要求在二叉搜索树上任意两节点的差的绝对值的最小值。

注意是二叉搜索树,二叉搜索树可是有序的。

遇到在二叉搜索树上求什么最值啊,差值之类的,就把它想成在一个有序数组上求最值,求差值,这样就简单多了。

递归

那么二叉搜索树采用中序遍历,其实就是一个有序数组。

在一个有序数组上求两个数最小差值,这是不是就是一道送分题了。

最直观的想法,就是把二叉搜索树转换成有序数组,然后遍历一遍数组,就统计出来最小差值了。

代码如下:

题解:

class Solution {
private:
vector<int> vec;
void traversal(TreeNode* root) {
    if (root == NULL) return;
    traversal(root->left);
    vec.push_back(root->val); // 将二叉搜索树转换为有序数组
    traversal(root->right);
}
public:
    int getMinimumDifference(TreeNode* root) {
        vec.clear();
        traversal(root);
        if (vec.size() < 2) return 0;
        int result = INT_MAX;
        for (int i = 1; i < vec.size(); i++) { // 统计有序数组的最小差值
            result = min(result, vec[i] - vec[i-1]);
        }
        return result;
    }
};

双指针

以上代码是把二叉搜索树转化为有序数组了,其实在二叉搜素树中序遍历的过程中,我们就可以直接计算了。

需要用一个pre节点记录一下cur节点的前一个节点。

如图:

530.二叉搜索树的最小绝对差

一些同学不知道在递归中如何记录前一个节点的指针,其实实现起来是很简单的,大家只要看过一次,写过一次,就掌握了。

题解:

class Solution {
public:
    int result = INT_MAX;
    TreeNode* pre = NULL;
    void traversal(TreeNode* root)
    {
        if (root == NULL)
        {
            return;
        }
        //左
        traversal(root->left);
        //中
        if (pre != NULL)
        {
            result = min(result, (root->val - pre->val));
        }
        pre = root; //记录前一个
        //右
        traversal(root->right);
    }
    int getMinimumDifference(TreeNode* root) {
        traversal(root);
        return result;
    }
};

501. 二叉搜索树中的众数

文章:代码随想录 (programmercarl.com)

视频:不仅双指针,还有代码技巧可以惊艳到你! | LeetCode:501.二叉搜索树中的众数_哔哩哔哩_bilibili

思路:

既然是搜索树,它中序遍历就是有序的

如图:

501.二叉搜索树中的众数1

中序遍历代码如下:

void searchBST(TreeNode* cur) {
    if (cur == NULL) return ;
    searchBST(cur->left);       // 左
    (处理节点)                // 中
    searchBST(cur->right);      // 右
    return ;
}

遍历有序数组的元素出现频率,从头遍历,那么一定是相邻两个元素作比较,然后就把出现频率最高的元素输出就可以了。

关键是在有序数组上的话,好搞,在树上怎么搞呢?

这就考察对树的操作了。

二叉树:搜索树的最小绝对差 (opens new window)中我们就使用了pre指针和cur指针的技巧,这次又用上了。

弄一个指针指向前一个节点,这样每次cur(当前节点)才能和pre(前一个节点)作比较。

而且初始化的时候pre = NULL,这样当pre为NULL时候,我们就知道这是比较的第一个元素。

代码如下:

if (pre == NULL) { // 第一个节点
    count = 1; // 频率为1
} else if (pre->val == cur->val) { // 与前一个节点数值相同
    count++;
} else { // 与前一个节点数值不同
    count = 1;
}
pre = cur; // 更新上一个节点

此时又有问题了,因为要求最大频率的元素集合(注意是集合,不是一个元素,可以有多个众数),如果是数组上大家一般怎么办?

应该是先遍历一遍数组,找出最大频率(maxCount),然后再重新遍历一遍数组把出现频率为maxCount的元素放进集合。(因为众数有多个)

这种方式遍历了两遍数组。

那么我们遍历两遍二叉搜索树,把众数集合算出来也是可以的。

但这里其实只需要遍历一次就可以找到所有的众数。

那么如何只遍历一遍呢?

如果 频率count 等于 maxCount(最大频率),当然要把这个元素加入到结果集中(以下代码为result数组),代码如下:

if (count == maxCount) { // 如果和最大值相同,放进result中
    result.push_back(cur->val);
}

是不是感觉这里有问题,result怎么能轻易就把元素放进去了呢,万一,这个maxCount此时还不是真正最大频率呢。

所以下面要做如下操作:

频率count 大于 maxCount的时候,不仅要更新maxCount,而且要清空结果集(以下代码为result数组),因为结果集之前的元素都失效了。

if (count > maxCount) { // 如果计数大于最大值
    maxCount = count;   // 更新最大频率
    result.clear();     // 很关键的一步,不要忘记清空result,之前result里的元素都失效了
    result.push_back(cur->val);
}

关键代码都讲完了,完整代码如下:(只需要遍历一遍二叉搜索树,就求出了众数的集合

题解:

class Solution {
private:
    int maxCount = 0; // 最大频率
    int count = 0; // 统计频率
    TreeNode* pre = NULL;
    vector<int> result;
    void searchBST(TreeNode* cur) {
        if (cur == NULL) return ;

        searchBST(cur->left);       // 左
                                    // 中
        if (pre == NULL) { // 第一个节点
            count = 1;
        } else if (pre->val == cur->val) { // 与前一个节点数值相同
            count++;
        } else { // 与前一个节点数值不同
            count = 1;
        }
        pre = cur; // 更新上一个节点

        if (count == maxCount) { // 如果和最大值相同,放进result中
            result.push_back(cur->val);
        }

        if (count > maxCount) { // 如果计数大于最大值频率
            maxCount = count;   // 更新最大频率
            result.clear();     // 很关键的一步,不要忘记清空result,之前result里的元素都失效了
            result.push_back(cur->val);
        }

        searchBST(cur->right);      // 右
        return ;
    }

public:
    vector<int> findMode(TreeNode* root) {
        count = 0;
        maxCount = 0;
        TreeNode* pre = NULL; // 记录前一个节点
        result.clear();

        searchBST(root);
        return result;
    }
};

236. 二叉树的最近公共祖先

文章:代码随想录 (programmercarl.com)

视频:自底向上查找,有点难度! | LeetCode:236. 二叉树的最近公共祖先_哔哩哔哩_bilibili

思路:

遇到这个题目首先想的是要是能自底向上查找就好了,这样就可以找到公共祖先了。

那么二叉树如何可以自底向上查找呢?

回溯啊,二叉树回溯的过程就是从低到上。

后序遍历(左右中)就是天然的回溯过程,可以根据左右子树的返回值,来处理中节点的逻辑。

接下来就看如何判断一个节点是节点q和节点p的公共祖先呢。

首先最容易想到的一个情况:如果找到一个节点,发现左子树出现结点p,右子树出现节点q,或者 左子树出现结点q,右子树出现节点p,那么该节点就是节点p和q的最近公共祖先。 即情况一:

img

判断逻辑是 如果递归遍历遇到q,就将q返回,遇到p 就将p返回,那么如果 左右子树的返回值都不为空,说明此时的中节点,一定是q 和p 的最近祖先。

那么有录友可能疑惑,会不会左子树 遇到q 返回,右子树也遇到q返回,这样并没有找到 q 和p的最近祖先。

这么想的录友,要审题了,题目强调:二叉树节点数值是不重复的,而且一定存在 q 和 p

但是很多人容易忽略一个情况,就是节点本身p(q),它拥有一个子孙节点q(p)。 情况二:

img

其实情况一 和 情况二 代码实现过程都是一样的,也可以说,实现情况一的逻辑,顺便包含了情况二。

因为遇到 q 或者 p 就返回,这样也包含了 q 或者 p 本身就是 公共祖先的情况。

这一点是很多录友容易忽略的,在下面的代码讲解中,可以再去体会。

递归三部曲:

  • 确定递归函数返回值以及参数

需要递归函数返回值,来告诉我们是否找到节点q或者p,那么返回值为bool类型就可以了。

但我们还要返回最近公共节点,可以利用上题目中返回值是TreeNode * ,那么如果遇到p或者q,就把q或者p返回,返回值不为空,就说明找到了q或者p。

代码如下:

TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q)

1

  • 确定终止条件

遇到空的话,因为树都是空了,所以返回空。

那么我们来说一说,如果 root == q,或者 root == p,说明找到 q p ,则将其返回,这个返回值,后面在中节点的处理过程中会用到,那么中节点的处理逻辑,下面讲解。

代码如下:

if (root == q || root == p || root == NULL) return root;
  • 确定单层递归逻辑

值得注意的是 本题函数有返回值,是因为回溯的过程需要递归函数的返回值做判断,但本题我们依然要遍历树的所有节点。

我们在二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值? (opens new window)中说了 递归函数有返回值就是要遍历某一条边,但有返回值也要看如何处理返回值!

如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树呢?

搜索一条边的写法:

if (递归函数(root->left)) return ;

if (递归函数(root->right)) return ;

搜索整个树写法:

left = 递归函数(root->left);  // 左
right = 递归函数(root->right); // 右
left与right的逻辑处理;         // 中 

看出区别了没?

在递归函数有返回值的情况下:如果要搜索一条边,递归函数返回值不为空的时候,立刻返回,如果搜索整个树,直接用一个变量left、right接住返回值,这个left、right后序还有逻辑处理的需要,也就是后序遍历中处理中间节点的逻辑(也是回溯)

那么为什么要遍历整棵树呢?直观上来看,找到最近公共祖先,直接一路返回就可以了。

如图:

236.二叉树的最近公共祖先

就像图中一样直接返回7,多美滋滋。

但事实上还要遍历根节点右子树(即使此时已经找到了目标节点了),也就是图中的节点4、15、20。

因为在如下代码的后序遍历中,如果想利用left和right做逻辑处理, 不能立刻返回,而是要等left与right逻辑处理完之后才能返回。

left = 递归函数(root->left);  // 左
right = 递归函数(root->right); // 右
left与right的逻辑处理;         // 中 

所以此时大家要知道我们要遍历整棵树。知道这一点,对本题就有一定深度的理解了。

那么先用left和right接住左子树和右子树的返回值,代码如下:

TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);

如果left 和 right都不为空,说明此时root就是最近公共节点。这个比较好理解

如果left为空,right不为空,就返回right,说明目标节点是通过right返回的,反之依然

这里有的同学就理解不了了,为什么left为空,right不为空,目标节点通过right返回呢?

如图:

236.二叉树的最近公共祖先1

图中节点10的左子树返回null,右子树返回目标值7,那么此时节点10的处理逻辑就是把右子树的返回值(最近公共祖先7)返回上去!

这里也很重要,可能刷过这道题目的同学,都不清楚结果究竟是如何从底层一层一层传到头结点的。

那么如果left和right都为空,则返回left或者right都是可以的,也就是返回空。

代码如下:

if (left == NULL && right != NULL) return right;
else if (left != NULL && right == NULL) return left;
else  { //  (left == NULL && right == NULL)
    return NULL;
}

那么寻找最小公共祖先,完整流程图如下:

236.二叉树的最近公共祖先2

从图中,大家可以看到,我们是如何回溯遍历整棵二叉树,将结果返回给头结点的!

题解:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        //当前结点为p或q时,返回该节点,如果p或q为祖先节点,直接返回
        if (root == p || root == q || root == NULL)
        {
            return root;
        }
        //用left和right接住左右子树返回值,在处理中结点时会用到
        TreeNode* left = lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);

        //当前结点的左右子树恰好是p和q时,返回该节点
        if (left != NULL && right != NULL)
        {
            return root;
        }
        //当前结点左子树不为空,右子树为空时,说明p和q的祖先在左子树上,返回left
        if (left != NULL && right == NULL)
        {
            return left;
        }
        //当前结点右子树不为空,左子树为空时,说明p和q的祖先在右子树上,返回right
        else if (left == NULL && right != NULL) {
            return right;
        }
        //如果左右子树都为空,则没有公共祖先
        else {
            return NULL;
        }
    }
};

标签:right,NULL,节点,搜索,result,二叉,root,LeetCode,left
From: https://www.cnblogs.com/chaoyue-400/p/17107175.html

相关文章

  • 【LeetCode字符串#01】反转字符串I+II
    反转字符串力扣题目链接(opensnewwindow)编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组char[]的形式给出。不要给另外的数组分配额外的空间,你......
  • 搜索引擎如何判断关键词?
    1.判断搜索引擎,判断大牛历史网关键词,不影响蜘蛛抓取,只针对用户访问,如果触发设置的关键词,自动404页面2.可以判断时间,比如几点到几点执行只针对用户访问,不影响搜索引擎使......
  • 【LeetCode字符串#02】替换空格,reserve和resize的区别分析
    替换空格力扣题目链接(opensnewwindow)请实现一个函数,把字符串s中的每个空格替换成"%20"。示例1:输入:s="Wearehappy."输出:"We%20are%20happy."思路一个错误......
  • lc226-翻转二叉树
    //leetcodesubmitregionbegin(Prohibitmodificationanddeletion)/***Definitionforabinarytreenode.*publicclassTreeNode{*intval;*TreeNo......
  • #yyds干货盘点# LeetCode程序员面试金典:硬币
    题目:硬币。给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007)示例1:输入:n=5输出:2解释:有两......
  • #yyds干货盘点# LeetCode面试题:回文数
    1.简述:给你一个整数x,如果x是一个回文整数,返回true;否则,返回false。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。例如,121是回文,而123不是。 示例1:输......
  • [leetcode每日一题]2.9
    ​​2331.计算布尔二叉树的值​​难度简单66给你一棵 完整二叉树 的根,这棵树有以下特征:叶子节点 要么值为 ​​0​​ 要么值为 ​​1​​ ,其中 ​​0​​ 表示 ......
  • m分别使用Dijkstra算法和Astar算法进行刚体机器人最短路径搜索和避障算法的matlab仿真
    1.算法描述Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止(BFS、pr......
  • Linux系列教程(六)——Linux常用命令之文件搜索命令
    前一篇博客我们讲解了​​Linux链接命令和权限管理命令​​, 通过ln-s 链接名表示创建软链接,不加-s表示创建硬链接;还有三个更改权限的命令,chmod命令可以更改文件或......
  • 搜索Alist
      https://fofa.info/ 在 https://fofa.info/搜索title="alist"+country="CN"......