首页 > 编程语言 >算法学习笔记(9): 中国剩余定理(CRT)以及其扩展(EXCRT)

算法学习笔记(9): 中国剩余定理(CRT)以及其扩展(EXCRT)

时间:2023-01-15 22:13:21浏览次数:59  
标签:CRT pmod 定理 EXCRT 算法 m2 data ll equiv

扩展中国剩余定理

讲解扩展之前,我们先叙述一下普通的中国剩余定理

中国剩余定理

中国剩余定理通过一种非常精巧的构造求出了一个可行解

但是毕竟是构造,所以相对较复杂

\[\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ x \equiv a_3 \pmod{m_3} \\ \dots \\ x \equiv a_n \pmod{m_n} \end{cases} \]

对于上述同余方程组,首先需要满足 \(m_1, m_2, m_3, \dots, m_n\) 互质

令 \(m = \prod_{i=1}^{n} m_i, M_i = m / m_i,\ t_i\) 是线性同余方程 \(M_it_i \equiv 1 \pmod {m_i}\) 的一个解

那么上述方程组有整数解,为 \(x = \sum_{i=1}^n a_iM_it_i\)


证明:

由于所有 \(m_i\) 互质,所以 \(M_i = m/m_i\) 是除了 \(m_i\) 之外的所有模数的倍数,所以 \(\forall j \ne i, a_iM_it_i \equiv 0 \pmod {m_k}\)

所以代入 \(x = \sum_{i=1}^n a_iM_it_i\),原方程组成立


中国剩余定理给出了方程的一个特解。通解可以表示为 \(x + km (k \in \Z)\)。如果需要求最小的非负整数解,只需要让 \(x\) 对于 \(m\) 取模就是。

参考代码

【模板】中国剩余定理(CRT)/ 曹冲养猪 - 洛谷

#include <iostream>

typedef long long ll;

ll m[11], a[11], Mm[11], y[11];

// 扩展欧几里得算法,由于求出线性同余方程 Mi * ti = 1 (mod p) 的一个特解
// 上述同余式可以转化为 Mi * ti + k * p = 1
// 所以跑一个 extgcd(Mi, p, ti, k) 即可 (k没有用的)
void extgcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
        x = 1, y = 0;
        return; 
    }
    extgcd(b, a % b, y, x);
    y -= (a / b) * x;
}

int main() {
    int n; scanf("%d", &n);

    ll M(1);
    // 这里读入,并求出m
    for (int i = 0; i < n; i++) {
        scanf("%lld%lld", m + i, a + i);
        M *= m[i];
    }

    // 求出Mi
    for (int i = 0; i < n; i++) {
        Mm[i] = M / m[i];
    }

    // 求出每一个不定方程的特解
    for (int i = 0; i < n; i++) {
        ll x, tmp, mi = m[i];
        extgcd(Mm[i], mi, x, tmp);
        y[i] = (x + mi) % mi;
    } 

    // 求和获得最小正整数解
    ll x(0);
    for (int i = 0; i < n; i++) {
        x = (x + a[i] * Mm[i] * y[i]) % M;
    }

    printf("%lld\n", x);
    return 0;
}

扩展中国剩余定理

还是考虑上述式子

\[\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ x \equiv a_3 \pmod{m_3} \\ \dots \\ x \equiv a_n \pmod{m_n} \end{cases} \]

此时,我们不保证 \(m_i\) 不一定两两互质,所以中国剩余定理不再适用

所以扩展中国剩余定理就开始发挥作用了

虽然说是扩展……但是两者思路很不一样

扩展中国剩余定理采用数学归纳法,或者说两两合并法

假如我们需要合并方程

\[x \equiv a_1 \pmod {m_1} \]

\[x \equiv a_2 \pmod {m_2} \]

我们将同余式改写

\[k_1m_1 + a_1 = x \]

\[k_2m_2 + a_2 = x \]

将两者相减,整理后可得

\[k_1m_1 - k_2m_2 = a_2 - a_1 \]

由于我们已知 \(m_1, m_2, a_1, a_2\),也就是说我们只需要知道 \(k_1, k_2\) 其中任意一个,就可以求出这时的 \(x\) 是个什么东西了

所以,联想到了……扩展欧几里得算法

可以参考文章:算法学习笔记(1): 欧几里得算法及其扩展

我们令

\[\begin{aligned} d &= gcd(m_1, m_2) \\ c &= a_2 - a_1 \end{aligned} \]

那么化简一下有:\(k_1 m_1 - k_2 m_2 = c\)

所以我们求出 \(k_1' \frac {m_1}d + k_2' \frac {m_2}d = 1\)

那么换回去之后

\[\begin{aligned} k_1 &= k_1' \frac cd \\ k_2 &= -k_2' \frac cd \end{aligned} \]

由于 exgcd(a, b, x, y) 求出的是 xa + yb = gcd(a, b) 的一组解……所以需要 \(\frac cd\)

令 \(l = lcm(m_1, m_2) = m_1 m_2 / gcd(m_1, m_2)\)

那么此时 \(x \equiv k_1' m_1\frac cd + a_1 \pmod l\)

也就是可以得到 \(x\) 的一个解集 \(x \in X = \{kl + x|k \in \R\}\)

也就是说,我们将上述两个式子合并成了

\[x \equiv k_1' \frac cd m_1 + a_1 \pmod {lcm(m_1, m_2)} \]

那么考虑代码怎么写

typedef int data; // 方便换成long long

// 扩展欧几里得算法
inline data exgcd(data a, data b, data &x, data &y) {
    if (b == 0) {
        x = 1, y = 0;
        return a;
    }

    data r = exgcd(b, a % b, y, x);
    y -= (a / b) * x;
    return r;
}

// 最终的合并的结果会放在 a1, m1上
// 每一部分我会在后文详细的解释
inline bool merge(data& a1, data& m1, data a2, data m2) {
    // section1: 为了防止溢出,需要适当的取模
    data c = (a2 - a1) % m2;
    if (c < 0) c += m2;

    // section2: 通过拓展欧几里得算法求出上文中的 s = k1'
    data d = gcd(m1, m2), s, t;
    exgcd(m1 / d, m2 / d, s, t);

    // +section2.5: 判断是否有解
    if (c % d) return false;

    // section3: 这里将s转化为上文中的 k
    s = s / * c % m2;
    if (s < 0) s += m2;

    // section4: 正式合并
    data lcm = m1 / d * m2;
    a1 = (a1 + s * m1) % lcm;
    if (a1 < 0) a1 += lcm;
    m1 = lcm;
    return true;
}

?:为什么在前三个部分放在了模 \(m2\) 的情况下计算

为了避免溢出,我们需要将 \(s\) 转化为最小的正整数解

那么需要有代码 (s % (m2 / d) + m2 / d) % (m2 / d)

考虑到其实并不需要最小……所以为了方便,就直接是(s % m2 + m2) % m2

考虑优化第二个模运算(贼慢),所以换成了if语句,就是上面代码的写法

那么第一个部分为什么也可以取模呢?

考虑我们在第三部分放在了模 \(m_2\) 的意义下,所以我们可以把整个不定方程组放在模 \(m_2\) 的意义下,所以就可以把 \(c\) 对于 \(m_2\) 取模

?: 为什么在第二部分需要提前算出 \(gcd(m_1, m_2)\)

其实是不用的……只需要 data s, t; data d = exgcd(m1, m2, s, t);也可以算出正确答案……

?: 判断有解是如何判断的

有无解实际上就是拓展欧几里得算法有无解

而判断拓欧算法有无解,也就通过贝祖定理验证

也就是说,对于不定方程 ax + by = c

如果 gcd(x, y) | c 则有解,否则无解

【模板】扩展中国剩余定理(EXCRT) - 洛谷

NOTICE:在模板题上,由于可能会溢出……至于什么地方需要用龟速乘,请读者自行揣度

关于龟速乘:算法学习笔记(2): 逆元及其应用我提过一点

更详细的参考 快速乘总结 - 一只不咕鸟

标签:CRT,pmod,定理,EXCRT,算法,m2,data,ll,equiv
From: https://www.cnblogs.com/jeefy/p/17054217.html

相关文章

  • 非对称加密算法
    非对称加密密钥是成对出现的公钥:publickey,公开给所有人,主要给别人加密使用私钥:secretkey,privatekey自己留存,必须保证其私密性特点:用公钥加密数据,只能使用与之配对......
  • 哈希算法
    哈希算法:将任意数据缩小成固定大小的“指纹“,称为:digest常见算法:md5:128bits、sha1:160bits、              Sha224、sha256、sha384、sha512hash(da......
  • 大步小步算法(BSGS)
    BSGS是解决\(a^{l}\equivb(\modp)\)已知\(a\)、\(b\)、\(p\)的情况下求最小的非负整数\(l\)的算法。设$m=\left\lceil\sqrt{p}\right\rceil$,\(l=x\timesm-y(0\l......
  • 对称加密算法
    Alice-->Bob对称算法:key1=key2data--->加密(key1)--->data’--->解密(key2)--->data特性:(1) 加密key1、解密key2相同,即使用同一个密钥,效率高,易实现,适合加密大量数据,如加......
  • leetcode算法入门Day6---滑动窗口
    3.无重复字符的最长子串给定一个字符串s,请你找出其中不含有重复字符的最长子串的长度。测试用例:输入:s="abcabcbb"输出:3解释:因为无重复字符的最长子串......
  • 02_算法分析
    一、算法分析本系列笔记全部来源了《2020最新数据结构与算法教程》,点击视频连接即可跳转观看学习。如有侵权,请联系删除,谢谢。前面我们已经介绍了,研究算法的最终目的就......
  • 和菜鸟一起学算法之三分法求极值问题
    7年,唉,可是他错了,女孩根本不爱他,不过期间他的执着和付出,很让我感动,也许自己不太像他那样,才会让自己有现在的处境吧。也许吧。小感慨下。不过现在也挺好的,上上班,写写文章,然后......
  • 机器学习算法:逻辑回归api介绍
    学习目标知道逻辑回归api的用法sklearn.linear_model.LogisticRegression(solver='liblinear',penalty=‘l2’,C=1.0)solver可选参数:{'liblinear','sag','saga','new......
  • Geohash算法
                   ......
  • 常见算法的拓展
    \(\large\text{Floyed--最小环}\)题目链接思路:枚举环上一条路径\(i\)至\(j\),那么该环一定由是一条\(k\)至\(i\)的边和该路径再加\(j\)至\(k\)的边。在取最......