首页 > 编程语言 >Dijkstra(迪杰斯特拉)算法C++实现&讲解

Dijkstra(迪杰斯特拉)算法C++实现&讲解

时间:2023-01-06 20:11:49浏览次数:51  
标签:pre dist cout temp int 迪杰 C++ Dijkstra vector

Dijkstra迪杰斯特拉算法及C++实现

Dijkstra算法是典型的最短路径路由算法,用来计算一个节点到其他所有节点的最短路径。算法的基本思想和流程是:
1. 初始化出发点到其它各点的距离dist[]以及各点的前一个访问点pre[];
2. for(i=2…n){
  找出dist[]中未访问过点中的最小值,记录为best;
  以dist[best]为基准更新dist[];
  更新pre[];
}

从1出发,第一次找到最小点2,更新dist[],然后找到最小点4,以此类推,以当前最小为最优(贪心算法),列出下表:

迭代次数sbestdist[2]dist[3]dist[4]dist[5]
1(初始化) {1} - 10 max 30 100
2 {1,2} 2 10 60 30 100
3 {1,2,4} 4 10 50 30 90
4 {1,2,4,3} 3 10 50 30 60
5 {1,2,4,3,5} 5 10 50 30 60

具体实现:

#include <iostream>
#include <vector>
const int maxdist = 114514;
using namespace std;
/*n是总的结点数,v是出发结点,dist是距离,pre前一个结点,d是结点间的权值*/
void Dijkstra(int n, int v, vector<int> &dist, vector<int> &pre, vector<vector<int>> &d){
    vector<bool> s(n+1);
    for (int i = 1; i <= n;i++){
        dist[i] = d[v][i];
        if (dist[i] < maxdist)
            pre[i] = v;
        else
            pre[i] = 0;
    }
    dist[v] = 0;
    s[v] = true;
    for (int i = 2; i <= n;i++){//总迭代次数
        int best = v;
        int temp = maxdist;
        for (int j = 1; j <= n;j++){//找到最小的距离
            if (!s[j]&&dist[j]<temp){
                temp = dist[j];
                best = j;
            }
        }
        s[best] = true;
        for (int j = 1; j <= n;j++){//更新dist和pre
            if (!s[j] && d[best][j] != maxdist){
                int newdist = dist[best] + d[best][j];
                if (newdist<dist[j]){
                    dist[j] = newdist;
                    pre[j] = best;
                }
            }
        }       
    }
}

void printpath(vector<int> pre, int init, int fina){
    int temp=fina;
    vector<int> t;
    while (temp != init){
        t.push_back(temp);
        temp = pre[fina];
        fina = temp;
    }
    cout << init << "->";
    for (int i = t.size(); i >1;i--)cout << t[i-1] << "->";
    cout << t[0];
    t.clear();
}
int main(){
    int n, l;
    cout << "请输入结点数和线数:";
    cin >> n >> l;
    vector<vector<int>> d(n+1, vector<int>(n+1));
    for (int i = 1; i <= n;i++){
        for (int j = 1; j <= n; j++)
            d[i][j] = maxdist;
    }
    int p, q, len;
    for (int i = 1; i <= l; ++i){
        cin >> p >> q >> len;
        if (len < d[p][q]){       // 有重边
            d[p][q] = len;      // p指向q
            d[q][p] = len;      // q指向p,这样表示无向图
        }
    }
    vector<int> dist(n+1),pre(n+1);
    for (int i = 1; i <= n; ++i)dist[i] = maxdist;
    Dijkstra(n, 1, dist, pre, d);
    cout << "点1到点n的最短路径长度: " << dist[n] << endl;
    cout << "点1到点n的路径为: ";
    printpath(pre, 1, n);
    return 0;
}

 

#include <iostream>#include <vector>constint maxdist = 9999; usingnamespacestd; /*n是总的结点数,v是出发结点,dist是距离,pre前一个结点,d是结点间的权值*/void Dijkstra(int n, int v, vector<int> &dist, vector<int> &pre, vector<vector<int>> &d) { vector<bool> s(n+1); for (int i = 1; i <= n;i++) { dist[i] = d[v][i]; if (dist[i] < maxdist) pre[i] = v; else pre[i] = 0; } dist[v] = 0; s[v] = true; for (int i = 2; i <= n;i++)//总的迭代次数 { int best = v; int temp = maxdist; for (int j = 1; j <= n;j++)//找到最小的距离 { if (!s[j]&&dist[j]<temp) { temp = dist[j]; best = j; } } s[best] = true; for (int j = 1; j <= n;j++)//更新dist和pre { if (!s[j] && d[best][j] != maxdist) { int newdist = dist[best] + d[best][j]; if (newdist<dist[j]) { dist[j] = newdist; pre[j] = best; } } } } } void printpath(vector<int> pre, int init, int fina) { int temp=fina; vector<int> t; while (temp != init) { t.push_back(temp); temp = pre[fina]; fina = temp; } cout << init << "->"; for (int i = t.size(); i >1;i--) { cout << t[i-1] << "->"; } cout << t[0]; t.clear(); } int main() { int n, l; cout << "请输入结点数和线数:"; cin >> n >> l; vector<vector<int>> d(n+1, vector<int>(n+1)); for (int i = 1; i <= n;i++) { for (int j = 1; j <= n; j++) d[i][j] = maxdist; } int p, q, len; for (int i = 1; i <= l; ++i) { cin >> p >> q >> len; if (len < d[p][q]) // 有重边 { d[p][q] = len; // p指向q d[q][p] = len; // q指向p,这样表示无向图 } } vector<int> dist(n+1),pre(n+1); for (int i = 1; i <= n; ++i) dist[i] = maxdist; Dijkstra(n, 1, dist, pre, d); cout << "点1到点n的最短路径长度: " << dist[n] << endl; cout << "点1到点n的路径为: "; printpath(pre, 1, n); return0; }

标签:pre,dist,cout,temp,int,迪杰,C++,Dijkstra,vector
From: https://www.cnblogs.com/BadJui/p/17031499.html

相关文章