首页 > 编程语言 >卡尔曼滤波算法-通俗理解

卡尔曼滤波算法-通俗理解

时间:2022-12-12 15:13:48浏览次数:60  
标签:时刻 Kg 卡尔曼滤波 系统 协方差 算法 通俗 温度

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 卡尔曼滤波器的介绍 : 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分布(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的协方差(covariance)来判断。因为Kg=5^2/(5^2+4^2),所以Kg=0.61,我们可以估算出k时刻的实际温度值是:23+0.61*(25-23)=24.22度。可以看出,因为温度计的协方差(covariance)比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.22度)的偏差。算法如下:((1-Kg)*5^2)^0.5=3.12。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的3.12就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。 就是这样,卡尔曼滤波器就不断的把协方差(covariance)递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的协方差(covariance)。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇! 下面就要言归正传,讨论真正工程系统上的卡尔曼。 卡尔曼滤波器算法 : 在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随机变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。 首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述: X(k)=A X(k-1)+B U(k)+W(k) 再加上系统的测量值: Z(k)=H X(k)+V(k) 上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的协方差(covariance)分别是Q,R(这里我们假设他们不随系统状态变化而变化)。 对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们结合他们的协方差来估算系统的最优化输出(类似上一节那个温度的例子)。 首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态: X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1) 式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。 到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的协方差还没更新。我们用P表示协方差(covariance): P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2) 式(2)中,P(k|k-1)是X(k|k-1)对应的协方差,P(k-1|k-1)是X(k-1|k-1)对应的协方差,A’表示A的转置矩阵,Q是系统过程的协方差。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。 现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k): X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3) 其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4) 到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要令卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的协方差: P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5) 其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。 卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易用计算机编程实现。 在上面的例子中,过程误差和测量误差设定为4是为了讨论的方便。实际中,温度的变化速度以及温度计的测量误差都没有这么大。

标签:时刻,Kg,卡尔曼滤波,系统,协方差,算法,通俗,温度
From: https://www.cnblogs.com/yppah/p/16976068.html

相关文章

  • TIANCHI天池-OGeek算法挑战赛-完整方案及代码(亚军)
    首先很幸运拿到TIANCHI天池-OGeek算法挑战赛大赛的亚军,同时非常感谢大佬队友的带飞,同时希望我的分享与总结能给大家带来些许帮助,并且一起交流学习。(作者:王贺,知乎:鱼遇雨欲语......
  • 每日算法之把数组排成最小的数
    JZ45把数组排成最小的数描述输入一个非负整数数组numbers,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个。例如输入数组[3,32,321],则打印出这三......
  • 第一章算法概述总结
    代码规范类及其排版格式声明属性依次序是public:、protected:、private:。关键字public,protected,private不要缩进,声明的函数和变量缩进一个制表符。类声明前应加上注释,注......
  • 常见数据结构与算法的Python实现
    有人问我数据结构与算法怎么学?怎么用Python实现常见的数据结构算法?我找到一个github标星66.6k+的仓库,把各种常见算法用Python实现了,而且还有动图演示,非常值得推荐。(黄海广)仓......
  • 推荐:常见算法的python实现(github上25000多star)
    近日在github上发现一个25000多star的仓库,把各种常见算法用python实现了,而且还有动图演示,非常值得推荐。仓库说明这个仓库用python语言实现了绝大部分算法,主要是用于教学目......
  • 《3D计算机视觉:原理、算法及应用》一本全搞定
       1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉(ComputerVision,CV)最早的......
  • 数据算法之数据结构
      packagecom.Lucky.DataStructure;/*数据结构:逻辑结构+储存结构+储存结构的运算逻辑结构分为:线性结构1:1树状结构......
  • 他奠定了当今计算机算法的规范化和量化度量
    如今的我们对算法可谓并不陌生,由于互联网发展迅猛,哪怕没有系统学习过计算机底层理论的程序员,也接触过无数的算法。昨天笔者看到一个开放性思考题,内容是这样的:如果一个程序只......
  • vue源码分析-diff算法核心原理
    这一节,依然是深入剖析Vue源码系列,上几节内容介绍了VirtualDOM是Vue在渲染机制上做的优化,而渲染的核心在于数据变化时,如何高效的更新节点,这就是diff算法。由于源码中关于d......
  • Floyd算法
    Floyd算法dijistra算法解决,从一点出发,到其它所有点的最短路径。此算法解决,从任何一点出发,到任何点的最短路径。https://zhuanlan.zhihu.com/p/87480486理解......