首页 > 编程语言 >神经网络算法实验

神经网络算法实验

时间:2022-11-20 12:34:07浏览次数:33  
标签:ypred sigmoid h2 self h1 算法 神经网络 实验 np

【实验目的】

理解神经网络原理,掌握神经网络前向推理和后向传播方法;

掌握神经网络模型的编程实现方法。

【实验内容】

1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了两类蚊子(或飞蠓midges),他们测量了这两类蚊子每个个体的翼长和触角长,数据如下:

翼长 触角长 类别
1.78 1.14 Apf
1.96 1.18 Apf
1.86 1.20 Apf
1.72 1.24 Apf
2.00 1.26 Apf
2.00 1.28 Apf
1.96 1.30 Apf
1.74 1.36 Af
1.64 1.38 Af
1.82 1.38 Af
1.90 1.38 Af
1.70 1.40 Af
1.82 1.48 Af
1.82 1.54 Af
2.08 1.56 Af

现有三只蚊子的相应数据分别为(1.24,1.80)、(1.28,1.84)、(1.40,2.04),请判断这三只蚊子的类型。

【实验报告要求】

建立三层神经网络模型,编写神经网络训练的推理的代码,实现类型预测;
对照实验内容,撰写实验过程、算法及测试结果,程序不得使用sklearn库;
代码规范化:命名规则、注释;
查阅文献,讨论神经网络的应用场景。

 

import numpy as np
def sigmoid(x):
    return 1/(1+np.exp(-x))
def deriv_sigmoid(x):
    fx=sigmoid(x)
    return fx*(1-fx)
def mse_loss(y_true,y_pred):
    return ((y_true-y_pred)**2).mean()
class OurNeuralNetwork:
    def __init__(self):
        self.w1=np.random.normal()
        self.w2=np.random.normal()
        self.w3=np.random.normal()
        self.w4=np.random.normal()
        self.w5=np.random.normal()
        self.w6=np.random.normal()
        self.b1=np.random.normal()
        self.b2=np.random.normal()
        self.b3=np.random.normal()
    def feedforward(self,x):
        h1=sigmoid(self.w1*x[0]+self.w2*x[1]+self.b1)
        h2=sigmoid(self.w3*x[0]+self.w4*x[1]+self.b2)
        o1=sigmoid(self.w5*h1+self.w6*h2+self.b3)
        return o1
    def train(self,data,all_y_trues):
        learn_rate=0.1
        epochs=1000
        for epoch in range(epochs):
            for x,y_true in zip(data,all_y_trues):
                sum_h1=self.w1*x[0]+self.w2*x[1]+self.b1
                h1=sigmoid(sum_h1)
                sum_h2=self.w3*x[0]+self.w4*x[1]+self.b2
                h2=sigmoid(sum_h2)
                sum_o1=self.w5*h1+self.w6*h2+self.b3
                o1=sigmoid(sum_o1)
                y_pred=o1
                d_L_d_ypred=-2*(y_true-y_pred)
                d_ypred_d_w5=h1*deriv_sigmoid(sum_o1)
                d_ypred_d_w6=h2*deriv_sigmoid(sum_o1)
                d_ypred_d_b3=deriv_sigmoid(sum_o1)
                d_ypred_d_h1=self.w5*deriv_sigmoid(sum_o1)
                d_ypred_d_h2=self.w6*deriv_sigmoid(sum_o1)
                d_h1_d_w1=x[0]*deriv_sigmoid(sum_h1)
                d_h1_d_w2=x[1]*deriv_sigmoid(sum_h1)
                d_h1_d_b1=deriv_sigmoid(sum_h1)
                d_h2_d_w3=x[0]*deriv_sigmoid(sum_h2)
                d_h2_d_w4=x[1]*deriv_sigmoid(sum_h2)
                d_h2_d_b2=deriv_sigmoid(sum_h2)
                self.w1-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w1
                self.w2-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w2
                self.b1-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_b1
                self.w3-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w3
                self.w4-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w4
                self.b2-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_b2
                self.w5-=learn_rate*d_L_d_ypred*d_ypred_d_w5
                self.w6-=learn_rate*d_L_d_ypred*d_ypred_d_w6
                self.b3-=learn_rate*d_L_d_ypred*d_ypred_d_b3
                if epoch%10==0:
                    y_preds=np.apply_along_axis(self.feedforward,1,data)
                    loss=mse_loss(all_y_trues,y_preds)
                    print("Epoch %d loss:%.3f" % (epoch,loss))

data=np.array([
    [1.78,1.14],
    [1.96,1.18],
    [1.86,1.20],
    [1.72,1.24],
    [2.00,1.26],
    [2.00,1.28],
    [1.96,1.30],
    [1.74,1.36],
    [1.64,1.38],
    [1.82,1.38],
    [1.90,1.38],
    [1.70,1.40],
    [1.82,1.48],
    [1.82,1.54],
    [2.08,1.56],
])

all_y_trues=np.array([
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    0,
    0,
    0,
    0,
    0,
    0,
    0,
    0,
])
network=OurNeuralNetwork()
network.train(data,all_y_trues)
test1=np.array([1.24,1.80])
test2=np.array([1.28,1.84])
test3=np.array([1.40,2.04])
print("test1: %.3f" % network.feedforward(test1))
print("test2: %.3f" % network.feedforward(test2))
print("test3: %.3f" % network.feedforward(test3))
for i in [test1,test2,test3]:
    if network.feedforward(i)>0.5:
        print("test类型:Apf")
    else:
        print("test类型:Af")

 运行结果:

神经网络的应用场景:

神经网络可以用于信号处理、图像处理、 数据挖掘、电力系统、模式识别、机器人控制。

标签:ypred,sigmoid,h2,self,h1,算法,神经网络,实验,np
From: https://www.cnblogs.com/yemenwudi/p/16908216.html

相关文章

  • 实验四:神经网络算法
             ......
  • 罗正雄:基于展开交替优化的盲超分算法DAN
    SFFAI90—超分辨率专题《罗正雄:基于展开交替优化的盲超分算法》退化表达式为:盲超分就是已知y,求x这个求解过程可以表示为如下最优化问题:求出使得以下表达式最小的k和x值盲......
  • 实验四:神经网络算法
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验内容】1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了......
  • 神经网络算法
    【题目】1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了两类蚊子(或飞蠓midges),他们测量了这两类蚊子每个个体的翼长和触角长,数据如下:翼长触角长类别1.781.14Apf......
  • 实验四:神经网络算法实验
    importnumpyasnpdefsigmoid(x):return1/(1+np.exp(-x))#f(x)=1/(1+exp(-x))defderiv_sigmoid(x):fx=sigmoid(x)returnfx*(1-fx)#f'(x)=f(x)*(1-f(x))de......
  • 遗传算法 模板
    利用python中的geatpy库实现单目标和多目标优化importnumpyasnpimportgeatpyaseaclassMyProblem(ea.Problem):#继承Problem父类def__init__(self):......
  • Python第八章实验报告
    一.实验对象:《零基础学Python》第八章的3道实例和4道实战二.实验环境:IDLEShell3.9.7三.实验要求:学习使用标准模块和第三方模块四.实验过程:实例01创建计算BMI指数的......
  • 每日算法之判断是不是平衡二叉树
    JZ79判断是不是平衡二叉树描述输入一棵节点数为n二叉树,判断该二叉树是否是平衡二叉树。在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树平衡二叉树(Balan......
  • 虚拟dom和diff算法
    虚拟dom和diff算法1.虚拟dom是一个能代表DOM树的对象,通常含有标签名,标签上的属性、事件监听和子元素们和子元素们的属性2.虚拟dom优点,能减少不必要的DOM操作,能跨平台渲染......
  • [排序算法] 堆排序 (C++)
    堆排序解释什么是堆堆heap是一种近似完全二叉树的数据结构,其满足一下两个性质1.堆中某个结点的值总是不大于(或不小于)其父结点的值;2.堆总是一棵完全二叉树将根......