首页 > 编程语言 >实验四:神经网络算法实验

实验四:神经网络算法实验

时间:2022-11-19 21:45:17浏览次数:37  
标签:ypred sigmoid h2 self h1 算法 神经网络 实验 np

【实验目的】

理解神经网络原理,掌握神经网络前向推理和后向传播方法;

掌握神经网络模型的编程实现方法。

【实验内容】

1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了两类蚊子(或飞蠓midges),他们测量了这两类蚊子每个个体的翼长和触角长,数据如下:

翼长 触角长 类别
1.78 1.14 Apf
1.96 1.18 Apf
1.86 1.20 Apf
1.72 1.24 Apf
2.00 1.26 Apf
2.00 1.28 Apf
1.96 1.30 Apf
1.74 1.36 Af
1.64 1.38 Af
1.82 1.38 Af
1.90 1.38 Af
1.70 1.40 Af
1.82 1.48 Af
1.82 1.54 Af
2.08 1.56 Af

现有三只蚊子的相应数据分别为(1.24,1.80)、(1.28,1.84)、(1.40,2.04),请判断这三只蚊子的类型。

【实验报告要求】

建立三层神经网络模型,编写神经网络训练的推理的代码,实现类型预测;
对照实验内容,撰写实验过程、算法及测试结果,程序不得使用sklearn库;
代码规范化:命名规则、注释;
查阅文献,讨论神经网络的应用场景。

  答: 1.代码
import numpy as np
def sigmoid(x):
    return 1/(1+np.exp(-x))#f(x)=1/(1+exp(-x))
def deriv_sigmoid(x):
    fx=sigmoid(x)
    return fx*(1-fx)#f'(x)=f(x)*(1-f(x))
def mse_loss(y_true,y_pred):
    return ((y_true-y_pred)**2).mean()
class OurNeuralNetwork:
    def __init__(self):
        self.w1=np.random.normal()#权重
        self.w2=np.random.normal()
        self.w3=np.random.normal()
        self.w4=np.random.normal()
        self.w5=np.random.normal()
        self.w6=np.random.normal()
        self.b1=np.random.normal()#截距项
        self.b2=np.random.normal()
        self.b3=np.random.normal()
    def feedforward(self,x):
        h1=sigmoid(self.w1*x[0]+self.w2*x[1]+self.b1)
        h2=sigmoid(self.w3*x[0]+self.w4*x[1]+self.b2)
        o1=sigmoid(self.w5*h1+self.w6*h2+self.b3)
        return o1
    def train(self,data,all_y_trues):
        learn_rate=0.1
        epochs=1000
        for epoch in range(epochs):
            for x,y_true in zip(data,all_y_trues):
                sum_h1=self.w1*x[0]+self.w2*x[1]+self.b1
                h1=sigmoid(sum_h1)
                sum_h2=self.w3*x[0]+self.w4*x[1]+self.b2
                h2=sigmoid(sum_h2)
                sum_o1=self.w5*h1+self.w6*h2+self.b3
                o1=sigmoid(sum_o1)
                y_pred=o1
                d_L_d_ypred=-2*(y_true-y_pred)
                #Neuron o1
                d_ypred_d_w5=h1*deriv_sigmoid(sum_o1)
                d_ypred_d_w6=h2*deriv_sigmoid(sum_o1)
                d_ypred_d_b3=deriv_sigmoid(sum_o1)
                d_ypred_d_h1=self.w5*deriv_sigmoid(sum_o1)
                d_ypred_d_h2=self.w6*deriv_sigmoid(sum_o1)
                #Neuron h1
                d_h1_d_w1=x[0]*deriv_sigmoid(sum_h1)
                d_h1_d_w2=x[1]*deriv_sigmoid(sum_h1)
                d_h1_d_b1=deriv_sigmoid(sum_h1)
                #Neuron h2
                d_h2_d_w3=x[0]*deriv_sigmoid(sum_h2)
                d_h2_d_w4=x[1]*deriv_sigmoid(sum_h2)
                d_h2_d_b2=deriv_sigmoid(sum_h2)
                #Neuron h1
                self.w1-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w1
                self.w2-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w2
                self.b1-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_b1
                #Neuron h2
                self.w3-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w3
                self.w4-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w4
                self.b2-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_b2
                #Neuron o1
                self.w5-=learn_rate*d_L_d_ypred*d_ypred_d_w5
                self.w6-=learn_rate*d_L_d_ypred*d_ypred_d_w6
                self.b3-=learn_rate*d_L_d_ypred*d_ypred_d_b3
                if epoch%10==0:
                    y_preds=np.apply_along_axis(self.feedforward,1,data)
                    loss=mse_loss(all_y_trues,y_preds)
                    print("Epoch %d loss:%.3f" % (epoch,loss))
#翼长 触角长
data=np.array([
    [1.78,1.14],
    [1.96,1.18],
    [1.86,1.20],
    [1.72,1.24],
    [2.00,1.26],
    [2.00,1.28],
    [1.96,1.30],
    [1.74,1.36],
    [1.64,1.38],
    [1.82,1.38],
    [1.90,1.38],
    [1.70,1.40],
    [1.82,1.48],
    [1.82,1.54],
    [2.08,1.56],
])
#类别:Apf 1, Af 0
all_y_trues=np.array([
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    0,
    0,
    0,
    0,
    0,
    0,
    0,
    0,
])
network=OurNeuralNetwork()
network.train(data,all_y_trues)
test1=np.array([1.24,1.80])
test2=np.array([1.28,1.84])
test3=np.array([1.40,2.04])
print("test1: %.3f" % network.feedforward(test1))
print("test2: %.3f" % network.feedforward(test2))
print("test3: %.3f" % network.feedforward(test3))
#如果概率大于0.5则类型为Apf,小于0.5则类型为Af
for i in [test1,test2,test3]:
    if network.feedforward(i)>0.5:
        print("test类型:Apf")
    else:
        print("test类型:Af")

运行结果:

 

 

 

 

 

 

 

 

标签:ypred,sigmoid,h2,self,h1,算法,神经网络,实验,np
From: https://www.cnblogs.com/shenjie3186588507-/p/16907280.html

相关文章

  • T292113 [传智杯 #5 练习赛] 平等的交易 ----- 贪心算法、upper_bound()/lower_bound(
    题目描述你有 nn 件道具可以买,其中第 ii 件的价格为 a_iai​。你有 ww 元钱。你仅能用钱购买其中的一件商道具。当然,你可以拿你手中的道具换取其他的道具,只是这......
  • [排序算法] 希尔排序 (C++)
    前言本文章是建立在插入排序的基础上写的喔,如果有对插入排序还有不懂的童鞋,可以看看这里。❤❤❤直接/折半插入排序2路插入排序❤❤❤希尔排序解释希尔排序Shell......
  • 实验四:神经网络算法实验
    实验四:神经网络算法实验【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验内容】1.1981年生物学家格若根(W.G......
  • 银行家算法-安全性检验
    #include<bits/stdc++.h>usingnamespacestd;structprogress{intmax[3];intall[3];intneed[3];charpname[4];};voidfac(intn,intm,int......
  • 落谷 R94681591 -- 并查集+离线算法+倒序处理
    题目描述树的变迁思路因为更改点的权值不会改变树的结构,但是删去一条边会改变树的结构,不同与增加一条边,删除一条边的处理是很麻烦(没实现过!!!)既然我们无法删除一条边,那么......
  • 强化学习代码实战-08 DDPG 算法
    PPO算法是离线学习法,样本效率利用率低,且对连续动作空间情况处理能力弱,无法精细控制DDPG-深度确定性策略梯度算法,离线学习、处理连续动作空间DDPG构造一个确定性策略,采用......
  • 实验四:神经网络算法实验
     |20大数据三班| 20大数据三班 ||----|----|----||作业要求|作业要求||学号|20161337|【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方......
  • 实验四:神经网络算法实验
    实验四:神经网络算法实验【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验内容】1981年生物学家格若根(W.Gro......
  • 家庭实验室系列文章-如何迁移树莓派系统到更大的 SD 卡?
    前言其实这个专题很久很久之前就想写了,但是一直因为各种原因拖着没动笔。因为没有资格,也没有钱在一线城市买房(......
  • 实验四 神经网络算法实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验内容】1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了......