首页 > 编程语言 >OpenCV C++双目三维重建:双目摄像头实现双目测距

OpenCV C++双目三维重建:双目摄像头实现双目测距

时间:2022-11-08 22:36:34浏览次数:59  
标签:Mat 双目 测距 param 相机 opencv C++ 三维重建


OpenCV C++双目三维重建:双目摄像头实现双目测距

目录

​​OpenCV C++双目三维重建:双目摄像头实现双目测距​​

​​1.目录结构​​

​​2.依赖库​​

​​3.双目相机标定​​

​​ (1)双目相机标定-Python版​​

​​ (2)双目相机标定-Matlab版​​

​​4.相机参数配置​​

​​5. 双目测距​​

​​6. 运行Demo​​

​​7. 效果图​​

​​8. 源码下载​​

​​9.参考资料​​


本篇博文是《​​双目摄像头实现双目测距(Python)​​》的续作,我们将搭建一个OpenCV C++版本的双目三维重建系统。由于我们只考虑三维重建实现双目测距效果,因而去除了PCL和Open3d库三维显示效果,但依然保留了视差图,深度图等可视化效果,用户可以通过鼠标点击图像,即可获得对应的世界坐标以及深度距离信息。

从效果来看,C++版本的双目测距和Python版本的效果几乎一致,性能更优,速度更快,基本可以达到工业级别测距精度,可在Linux开发板运行,非常适合应用于无人机,智能小车测距避障等场景。

来~先看一下Demo的效果图(鼠标点击,终端会打印对应距离信息): 

OpenCV C++双目三维重建:双目摄像头实现双目测距_opencv视差图

OpenCV C++双目摄像头实现双目测距主要支持:

  • 支持双USB连接线的双目摄像头
  • 支持使用WLS滤波器对视差图进行滤波
  • 支持双目测距(鼠标点击图像即可获得其深度距离)
  • 提供配套的opencv-4.3.0和opencv_contrib-4.3.0源码 (需要自己编译)
  • 相比Python版本,C++版本性能更优,速度更快,可在Linux开发板运行,非常适合应用于无人机,智能小车测距避障等场景。
  • 简单运行,项目源码只在Ubuntu 18.04系统进行了验证;第三方依赖库只有opencv和opencv_contrib,如果你在Windows系统开发,请在Windows平台配置好opencv和opencv_contrib开发环境;

诚然,网上有很多C++版本双测距的代码,但项目都不是十分完整,而且恢复视差图效果也一般,难以达到商业实际应用,究其原因,主要有下面几个:

  • 双目摄像头质量问题,
  • 双目标定存在问题,导致校准误差较大
  • 没有使用WLS滤波器对视差图进行滤波,该方法可以极大提高视差图的效果


双目测距Demo视频


如果你需要Python版本的双目测距, 请查看鄙人另一篇博客《​​双目三维重建系统(双目标定+立体校正+双目测距+点云显示)Python​​》

本篇将着重介绍OpenCV C++项目实现双目测距的过程,关于双目相机标定+双目校正+双目匹配等内容,请查看鄙人另一篇博客《​​双目三维重建系统(双目标定+立体校正+双目测距+点云显示)Python​​》

【项目源码下载地址】OpenCV C++双目摄像头实现双目测距

【尊重原则,转载请注明出处】


1.目录结构

.
├── configs # 相机参数文件
├── data # 相机采集的数据
├── docs # 一些文档图片
├── src # C++源码
├── build.sh # 构建build脚本
├── main.cpp # 主程序
├── CMakeLists.txt # CMake文件
└── README.md # 说明文档

2.依赖库

  • 系统平台:Ubuntu 18.04
  • opencv-4.3.0 (opencv-3.4.0以上亦可)
  • opencv_contrib-4.3.0 (opencv_contrib-3.4.0以上亦可),WLS滤波器需要用到opencv_contrib库

opencv安装教程,请参考文章:​​Ubuntu18.04安装opencv和opencv_contrib​​

PS: 需确保opencv和opencv_contrib的版本号一致,避免版本差异导致编译错误。

项目源码只在Ubuntu 18.04系统进行了验证;第三方依赖库只有opencv和opencv_contrib,如果你在Windows系统开发,请在Windows平台配置好opencv和opencv_contrib开发环境;


3.双目相机标定

 (1)双目相机标定-Python版

请参考鄙人另一篇博客,无需Matlab,即可进行相机标定:​​双目三维重建系统(双目标定+立体校正+双目测距+点云显示)Python​​

该方法双目标定完成后,会得到一个双目相机内外参数信息(​stereo_cam.yml​)文件:

%YAML:1.0
---
size: !!opencv-matrix
rows: 2
cols: 1
dt: d
data: [ 640., 480. ]
K1: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 7.6159209686584518e+02, 0., 3.2031427422505453e+02, 0.,
7.6167321445963728e+02, 2.2467546927337131e+02, 0., 0., 1. ]
D1: !!opencv-matrix
rows: 1
cols: 5
dt: d
data: [ 3.4834574885170888e-02, -5.5261651661983137e-02,
5.7491952731614823e-04, -4.2764224824172658e-05,
1.8477350140315381e-02 ]
K2: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 7.6327773941976670e+02, 0., 2.8768149948082271e+02, 0.,
7.6350419442870850e+02, 2.1897333598636970e+02, 0., 0., 1. ]
D2: !!opencv-matrix
rows: 1
cols: 5
dt: d
data: [ 3.5020972475517692e-02, -4.0770660841280497e-02,
-4.4231087565750534e-04, -1.0552562170995372e-03,
-9.7749906830348537e-02 ]
R: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 9.9999370552351063e-01, 7.8563885326366346e-04,
3.4600122760633780e-03, -7.9503151737356746e-04,
9.9999600079883766e-01, 2.7140949167922721e-03,
-3.4578661403601796e-03, -2.7168286517956050e-03,
9.9999033095517087e-01 ]
T: !!opencv-matrix
rows: 3
cols: 1
dt: d
data: [ -6.0005833133148414e+01, 1.7047017063672587e-01,
6.0300223404957642e-01 ]
E: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ -1.1005724987007073e-04, -6.0346296076620343e-01,
1.6883191705475561e-01, 3.9550629985097430e-01,
-1.6255182474732952e-01, 6.0007339329190145e+01,
-1.2276256904913259e-01, -6.0005727085740176e+01,
-1.6345135556766910e-01 ]
F: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ -6.7250769136371160e-10, -3.6870834234286016e-06,
1.6143104894409041e-03, 2.4160347372858321e-06,
-9.9287680075344234e-07, 2.7862421257891157e-01,
-1.1014218394645766e-03, -2.7856049650040260e-01, 1. ]
R1: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 9.9997618806974742e-01, -2.0278309638726887e-03,
-6.5963016213173775e-03, 2.0367881225372914e-03,
9.9999701250432615e-01, 1.3514719999064883e-03,
6.5935413581266105e-03, -1.3648750875444691e-03,
9.9997733090723306e-01 ]
R2: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 9.9994547731576255e-01, -2.8407384289991728e-03,
-1.0048512373976153e-02, 2.8270879178959596e-03,
9.9999506202764499e-01, -1.3724045434755307e-03,
1.0052361397026631e-02, 1.3439216883706559e-03,
9.9994857062992937e-01 ]
P1: !!opencv-matrix
rows: 3
cols: 4
dt: d
data: [ 7.3741438842621210e+02, 0., 3.1126281356811523e+02, 0., 0.,
7.3741438842621210e+02, 2.2189782714843750e+02, 0., 0., 0., 1.,
0. ]
P2: !!opencv-matrix
rows: 3
cols: 4
dt: d
data: [ 7.3741438842621210e+02, 0., 3.1126281356811523e+02,
-4.4251577456670653e+04, 0., 7.3741438842621210e+02,
2.2189782714843750e+02, 0., 0., 0., 1., 0. ]
Q: !!opencv-matrix
rows: 4
cols: 4
dt: d
data: [ 1., 0., 0., -3.1126281356811523e+02, 0., 1., 0.,
-2.2189782714843750e+02, 0., 0., 0., 7.3741438842621210e+02, 0.,
0., 1.6664137886344466e-02, 0. ]

参数说明: 

  • 参数size,对应图像宽高(width,height)
  • 参数K1,对应左目相机内参矩阵(3×3)
  • 参数D1,对应左目相机畸变系数矩阵(5×1)
  • 参数K2,对应右目相机内参矩阵(3×3)
  • 参数D2,对应右目相机畸变系数矩阵(5×1)
  • 参数T,对应双目相机平移向量T(3×1)
  • 参数R,对应双目相机旋转矩阵R(3×3)
  • 至于配置文件中的参数,如R1, R2, P1, P2, Q这些重投影矩阵,可默写即可,不用修改,这些在运行时,会重新计算。

 (2)双目相机标定-Matlab版

网上已经存在很多Matlab双目相机标定的教程,请自行百度哈 ;使用Matlab工具箱进行双目相机标定后,请对应参数进行修改

需要注意的是:旋转矩阵R是(3×3)二维矩阵,而Matlab给出的是旋转向量om(1×3),请使用cv2.Rodrigues()将旋转向量转为旋转矩阵,参考下面的代码进行转换

import cv2
import numpy as np

# 定义旋转矩阵R,旋转向量om
R = [[9.9999370551606337e-01, 7.8563882630048958e-04, 3.4600144345510440e-03],
[-7.9503149273969136e-04, 9.9999600080163187e-01, 2.7140938945082542e-03],
[-3.4578682997252063e-03, -2.7168276311286426e-03, 9.9999033095047696e-01]]
R = np.asarray(R)
print(f"旋转矩阵R:\n {R}")
# 把旋转矩阵R转化为旋转向量om
om, _ = cv2.Rodrigues(R)
print(f"旋转向量om:\n {om}")
# 把旋转向量om转换为旋转矩阵R
R1, _ = cv2.Rodrigues(om)
print(f"旋转矩阵R1:\n {R1}")

4.相机参数配置

  • 双目相机标定完成后,得到了相机内外参数信息
  • 根据自己相机参数定义C++的​​CameraParam​​即可
  • 下面C++代码中,定义了双目相机CameraParam变量camera1,用户需要根据自己的双目相机,修改对应的相机内外参数。
/**
* 双目摄像头的相机参数
*/
struct CameraParam {
int width; //图像的宽度width
int height; //图像的高度height
Mat cameraMatrixL; //左相机内参K1(3×3)
Mat distCoeffL; //左相机畸变系数D1(5×1)
Mat cameraMatrixR; //右相机内参K2(3×3)
Mat distCoeffR; //右相机畸变系数D2(5×1)
Mat T; //平移向量T(3×1)
Mat R; //旋转矩阵R(3×3),如果是(3×1)旋转向量,请使用cv::Rodrigues()进行变换转为(3×3)旋转矩阵R
};

/***
* 设置摄像头参数,需要根据双目摄像头标定结果进行填写
*/
static CameraParam camera1 = {
640,//width
480,//height
(Mat_<double>(3, 3)
<< 7.6159209686633153e+02, 0., 3.2031427422691633e+02, 0., 7.6167321446015626e+02, 2.2467546926913309e+02, 0., 0., 1.),//cameraMatrixL
(Mat_<double>(5, 1)
<< 3.4834574887256914e-02, -5.5261651680159028e-02, 5.7491952534806736e-04, -4.2764223950233445e-05, 1.8477350164208820e-02),//distCoeffL
(Mat_<double>(3, 3)
<< 7.6327773983796783e+02, 0., 2.8768149776326379e+02, 0., 7.6350419482215057e+02, 2.1897333669573928e+02, 0., 0., 1.),
(Mat_<double>(5, 1)
<< 3.5020967512300320e-02, -4.0770565902033332e-02, -4.4231049297594003e-04, -1.0552565496142535e-03, -9.7750314807571667e-02),
(Mat_<double>(3, 1)
<< -6.0005833075452117e+01, 1.7047023105446815e-01, 6.0300273851103448e-01),
(Mat_<double>(3, 3)
<< 9.9999370551606337e-01, 7.8563882630048958e-04, 3.4600144345510440e-03, -7.9503149273969136e-04, 9.9999600080163187e-01, 2.7140938945082542e-03, -3.4578682997252063e-03, -2.7168276311286426e-03, 9.9999033095047696e-01),
};

5. 双目测距

OpenCV C++版本的双目测距与Python版本双目测距的效果几乎一致,且性能更优,速度更快,基本可以达到工业级别测距精度。由于我们只考虑三维重建实现双目测距效果,因而去除了PCL和Open3d库三维显示效果,但依然保留了视差图,深度图等可视化效果,用户可以通过鼠标点击图像,即可获得对应的世界坐标以及深度距离信息。

函数接口声明,都已经给出了详细的参数说明,为了方便大家学习,函数命名和实现逻辑与Python版本的几乎一致:

//
// Created by [email protected] on 2022/10/6.
//

#ifndef CAMERA_CALIBRATION_RECONSTRUCT_CPP_STEREO_RECONSTRUCT_H
#define CAMERA_CALIBRATION_RECONSTRUCT_CPP_STEREO_RECONSTRUCT_H

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

cv::Mat xyz_coord; //用于存放每个像素点距离相机镜头的三维坐标
cv::Point start; //鼠标按下的起始点
cv::Rect buttonRect; //定义矩形选框
bool buttonStatus = false; //是否选择对象


/**
* 双目摄像头的相机参数
*/
struct CameraParam {
int width; //图像的宽度width
int height; //图像的高度height
Mat cameraMatrixL; //左相机内参K1(3×3)
Mat distCoeffL; //左相机畸变系数D1(5×1)
Mat cameraMatrixR; //右相机内参K2(3×3)
Mat distCoeffR; //右相机畸变系数D2(5×1)
Mat T; //平移向量T(3×1)
Mat R; //旋转矩阵R(3×3),如果是(3×1)旋转向量,请使用cv::Rodrigues()进行变换转为(3×3)旋转矩阵R
};

/***
* 设置摄像头参数,需要根据双目摄像头标定结果进行填写
*/
static CameraParam camera1 = {640,//width
480,//height
(Mat_<double>(3, 3)
<< 7.6159209686633153e+02, 0., 3.2031427422691633e+02, 0., 7.6167321446015626e+02, 2.2467546926913309e+02, 0., 0., 1.),//cameraMatrixL
(Mat_<double>(5, 1)
<< 3.4834574887256914e-02, -5.5261651680159028e-02, 5.7491952534806736e-04, -4.2764223950233445e-05, 1.8477350164208820e-02),//distCoeffL
(Mat_<double>(3, 3)
<< 7.6327773983796783e+02, 0., 2.8768149776326379e+02, 0., 7.6350419482215057e+02, 2.1897333669573928e+02, 0., 0., 1.),
(Mat_<double>(5, 1)
<< 3.5020967512300320e-02, -4.0770565902033332e-02, -4.4231049297594003e-04, -1.0552565496142535e-03, -9.7750314807571667e-02),
(Mat_<double>(3, 1)
<< -6.0005833075452117e+01, 1.7047023105446815e-01, 6.0300273851103448e-01),
(Mat_<double>(3, 3)
<< 9.9999370551606337e-01, 7.8563882630048958e-04, 3.4600144345510440e-03, -7.9503149273969136e-04, 9.9999600080163187e-01, 2.7140938945082542e-03, -3.4578682997252063e-03, -2.7168276311286426e-03, 9.9999033095047696e-01),
};

/***
* 鼠标响应回调函数
* @param event
* @param x
* @param y
*/
static void onm ouse(int event, int x, int y, int, void *) {
if (buttonStatus) {
buttonRect.x = MIN(x, start.x);
buttonRect.y = MIN(y, start.y);
buttonRect.width = std::abs(x - start.x);
buttonRect.height = std::abs(y - start.y);
}

switch (event) {
case EVENT_LBUTTONDOWN: //鼠标左按钮按下的事件
start = Point(x, y);
buttonRect = Rect(x, y, 0, 0);
buttonStatus = true;
cout << "image(x,y)=" << start;
cout << " world coords=(x,y,depth)=" << xyz_coord.at<Vec3f>(start) << endl;
break;
case EVENT_LBUTTONUP: //鼠标左按钮释放的事件
buttonStatus = false;
if (buttonRect.width > 0 && buttonRect.height > 0)
break;
}
}

/***
* 显示图像
* @param winname 窗口名称
* @param image 图像
* @param delay 显示延迟,0表示阻塞显示
* @param flags 显示方式
*/
static void show_image(const string &winname, cv::Mat &image, int delay = 0, int flags = cv::WINDOW_AUTOSIZE) {
cv::namedWindow(winname, flags);
cv::imshow(winname, image);
cv::waitKey(delay);
}

/***
* 读取视频文件
* @param video_file 视频文件
* @param cap 视频流对象
* @param width 设置图像的宽度
* @param height 设置图像的高度
* @param fps 设置视频播放频率
* @return
*/
bool get_video_capture(string video_file, cv::VideoCapture &cap, int width = -1, int height = -1, int fps = -1) {
//VideoCapture video_cap;
cap.open(video_file);
if (width > 0 && height > 0) {
cap.set(cv::CAP_PROP_FRAME_WIDTH, width); //设置图像的宽度
cap.set(cv::CAP_PROP_FRAME_HEIGHT, height); //设置图像的高度
}
if (fps > 0) {
cap.set(cv::CAP_PROP_FPS, fps);
}
if (!cap.isOpened())//判断是否读取成功
{
return false;
}
return true;
}

/***
* 读取摄像头
* @param camera_id 摄像头ID号,默认从0开始
* @param cap 视频流对象
* @param width 设置图像的宽度
* @param height 设置图像的高度
* @param fps 设置视频播放频率
* @return
*/
bool get_video_capture(int camera_id, cv::VideoCapture &cap, int width = -1, int height = -1, int fps = -1) {
//VideoCapture video_cap;
cap.open(camera_id); //摄像头ID号,默认从0开始
if (width > 0 && height > 0) {
cap.set(cv::CAP_PROP_FRAME_WIDTH, width); //设置捕获图像的宽度
cap.set(cv::CAP_PROP_FRAME_HEIGHT, height); //设置捕获图像的高度
}
if (fps > 0) {
cap.set(cv::CAP_PROP_FPS, fps);
}
if (!cap.isOpened()) //判断是否成功打开相机
{
return false;
}
return true;
}

class StereoReconstruct {
public:

/***
* 构造函数,初始化StereoReconstruct
* @param camera 双目相机参数
* @param use_wls 是否使用WLS滤波器对视差图进行滤波
*/
StereoReconstruct(CameraParam camera, bool use_wls = true);

/***
* release
*/
~StereoReconstruct();

/***
* 开始双目测距任务
* @param frameL
* @param frameR
*/
void task(Mat frameL, Mat frameR, int delay = 0);

/***
* 畸变校正和立体校正
* @param imgL 左视图
* @param imgR 右视图
* @param rectifiedL 校正后左视图
* @param rectifiedR 校正后右视图
*/
void get_rectify_image(Mat &imgL, Mat &imgR, Mat &rectifiedL, Mat &rectifiedR);

/***
* 获得视差图
* @param imgL 畸变校正和立体校正后的左视图
* @param imgR 畸变校正和立体校正后的右视图
* @param dispL 返回视差图
* @param use_wls 是否使用WLS滤波器对视差图进行滤波
*/
void get_disparity(Mat &imgL, Mat &imgR, Mat &dispL, bool use_wls = true);//SGBM匹配算法

/***
* 计算像素点的3D坐标(左相机坐标系下)
* @param disp 视差图
* @param points_3d 返回三维坐标points_3d,三个通道分布表示(X,Y,Z),其中Z是深度图depth, 即距离,单位是毫米(mm)
* @param scale 单位变换尺度,默认scale=1.0,单位为毫米
*/
void get_3dpoints(Mat &disp, Mat &points_3d, float scale = 1.0);

/***
* 将输入深度图转换为伪彩色图,方面可视化
* @param depth
* @param colormap
*/
void get_visual_depth(cv::Mat &depth, cv::Mat &colormap, float clip_max = 6000.0);

/***
* 显示矫正效果
* @param rectifiedL
* @param rectifiedR
*/
void show_rectify_result(cv::Mat rectifiedL, cv::Mat rectifiedR);

/***
* 可视化视差图和深度图
* @param frameL
* @param frameR
* @param points_3d
* @param disp
* @param delay
*/
void show_2dimage(Mat &frameL, Mat &frameR, Mat &points_3d, Mat &disp, int delay);

/***
* 显示Mat的最大最小值
* @param src
* @param vmin 最小值下限
* @param vmax 最大值下限
*/
void clip(cv::Mat &src, float vmin, float vmax);

/***
* 显示Mat的最大最小值
* @param src
* @param th
* @param vmin
*/
void clip_min(cv::Mat &src, float th, float vmin);


public:
string depth_windows = "depth-color"; // 深度图的窗口名称
int use_wls; // 是否使用WLS滤波器对视差图进行滤波
Size image_size; // 图像宽高(width,height)
Rect validROIL; // 图像校正之后,会对图像进行裁剪,这里的左视图裁剪之后的区域
Rect validROIR; // 图像校正之后,会对图像进行裁剪,这里的右视图裁剪之后的区域
Mat mapLx, mapLy, mapRx, mapRy; // 映射表
Mat Rl, Rr, Pl, Pr, Q; // 校正后的旋转矩阵R,投影矩阵P, 重投影矩阵Q
cv::Ptr<cv::StereoSGBM> sgbm;
};


#endif //CAMERA_CALIBRATION_RECONSTRUCT_CPP_STEREO_RECONSTRUCT_H

6. 运行Demo

  • 主程序main.cpp实现了三个Demo
  1. 测试demo视频文件: 这是使用摄像头录制的双目视频文件,用于测试效果双目测距的效果
  2. 测试双目摄像头(双USB连接线的双目摄像头):用于测试双目摄像头,需要根据自己的摄像头修改ID号
  3. 测试一对左右相机图像效果
//
// 双目测距Demo
// Created by [email protected] on 2022/10/6.
//
#include <opencv2/opencv.hpp>
#include <iostream>
#include "stereo_reconstruct.h"

/***
* 测试demo视频文件
* @return
*/
int test_video_file() {
CameraParam camera = camera1;//双目相机参数
bool use_wls = true; //是否使用WLS滤波器对视差图进行滤波
StereoReconstruct *detector = new StereoReconstruct(camera, use_wls);
int imageWidth = camera1.width; //单目图像的宽度
int imageHeight = camera1.height; //单目图像的高度
string left_video = "../data/lenacv-video/left_video.avi";
string right_video = "../data/lenacv-video/right_video.avi";
VideoCapture capL, capR;
bool retL = get_video_capture(left_video, capL, imageWidth, imageHeight);
bool retR = get_video_capture(right_video, capR, imageWidth, imageHeight);
Mat frameL, frameR;
while (retL && retR) {
capL >> frameL;
capR >> frameR;
if (frameL.empty() or frameR.empty()) break;
detector->task(frameL, frameR, 20);
}
capL.release(); //释放对相机的控制
capR.release(); //释放对相机的控制
delete detector;
return 0;

}


/***
* 测试双目摄像头(双USB连接线的双目摄像头)
* @return
*/
int test_camera() {
CameraParam camera = camera1;//双目相机参数
bool use_wls = true; //是否使用WLS滤波器对视差图进行滤波
StereoReconstruct *detector = new StereoReconstruct(camera, use_wls);
int imageWidth = camera1.width; //单目图像的宽度
int imageHeight = camera1.height; //单目图像的高度
int camera1 = 0; //左摄像头ID号(请修改成自己左摄像头ID号)
int camera2 = 1; //右摄像头ID号(请修改成自己右摄像头ID号)
VideoCapture capL, capR;
bool retL = get_video_capture(camera1, capL, imageWidth, imageHeight);
bool retR = get_video_capture(camera2, capR, imageWidth, imageHeight);
Mat frameL, frameR;
while (retL && retR) {
capL >> frameL;
capR >> frameR;
if (frameL.empty() or frameR.empty()) break;
detector->task(frameL, frameR, 20);
}
capL.release(); //释放对相机的控制
capR.release(); //释放对相机的控制
delete detector;
return 0;
}

/***
* 测试一对左右图像
* @return
*/
int test_pair_image_file() {
CameraParam camera = camera1;//双目相机参数
bool use_wls = true; //是否使用WLS滤波器对视差图进行滤波
StereoReconstruct *detector = new StereoReconstruct(camera, use_wls);
Mat frameL = imread("../data/left.png", IMREAD_COLOR);
Mat frameR = imread("../data/right.png", IMREAD_COLOR);
detector->task(frameL, frameR, 0);
delete detector;
return 0;
}


int main() {
//测试一对左右图像
test_pair_image_file();
//测试demo视频文件
test_video_file();
//测试双目摄像头(双USB连接线的双目摄像头)
test_camera();
return 0;
}
  • 终端运行脚本:​bash build.sh
#!/usr/bin/env bash
if [ ! -d "build/" ];then
mkdir "build"
else
echo "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./Demo

7. 效果图

C++版本的双目测距与Python版本的效果几乎一致。从重建效果来看,未使用WLS滤波,其视差图出现了很多空洞,存在很多误匹配点;但使用WLS滤波后,视差图变得比较平滑,整体效果都有明显改善。

  • 鼠标点击depth-color窗口的图像任意区域,终端会打印对应距离信息

OpenCV C++双目三维重建:双目摄像头实现双目测距_c++三维重建_02


8. 源码下载

OpenCV C++版本双目测距项目代码包含:OpenCV C++双目摄像头实现双目测距

OpenCV C++双目三维重建:双目摄像头实现双目测距_opencv视差图_03

 【项目源码下载地址】OpenCV C++双目摄像头实现双目测距

  • 支持双USB连接线的双目摄像头
  • 支持使用WLS滤波器对视差图进行滤波
  • 支持双目测距(鼠标点击图像即可获得其深度距离)
  • 提供配套的opencv-4.3.0和opencv_contrib-4.3.0源码 (需要自己编译)
  • 相比Python版本,C++版本性能更优,速度更快,可在Linux开发板运行,非常适合应用于无人机,智能小车测距避障等场景。
  • 简单运行,项目源码只在Ubuntu 18.04系统进行了验证;第三方依赖库只有opencv和opencv_contrib,如果你在Windows系统开发,请在Windows平台配置好opencv和opencv_contrib开发环境;

如果你需要Python版本的双目测距, 请查看鄙人另一篇博客《​​双目三维重建系统(双目标定+立体校正+双目测距+点云显示)Python​​》


双目测距Demo视频



9.参考资料

  1. ​​双目三维重建系统(双目标定+立体校正+双目测距+点云显示)Python​​
  2. ​​双目摄像头实现双目测距(Python)​​
  3. ​​结构光三维重建-3D Scanning Software实现三维重建​​
  4. ​​Ubuntu18.04安装opencv和opencv_contrib​​

标签:Mat,双目,测距,param,相机,opencv,C++,三维重建
From: https://blog.51cto.com/u_15764210/5834991

相关文章

  • 【数据结构】例题:表达式求值 C++实现
    先写一个链栈#pragmaonce///链栈的结点类型template<classDataType>classStackNode{public: DataTypedata; StackNode*next; StackNode(){ next=nul......
  • C++面经 ----- C++11新特性:左值右值
    概念左值:可以取地址并且有名字的东西就是左值。右值:不能取地址的没有名字的东西就是右值。纯右值:运算表达式产生的临时变量、不和对象关联的原始字面量、非引用返回......
  • C++ 面经 ----- C++11新特性:auto & decltype 类型推导
    C++11引入了auto和decltype关键字使用他们可以在编译期就推导出变量或者表达式的类型,方便开发者编码也简化了代码。 auto示例autoa=10;//10是int型,可以自动推导......
  • 使用一条for语句求若干个整数的平均值--C++自学
    #include<iostream>#include<stdlib.h>usingnamespacestd;intmain(){intx,count=0,sum=0;cout<<"输入若干整数:"<<endl;cin>>x;for(;x!=......
  • 问题 I: 零基础学C/C++172——猴子选大王
    提示中也说了,这题可以用循环列表来实现,但是其实我也不怎么会哈哈哈哈,这题也同样可以用简单的基础语法来实现,只不过我们需要对一个循环语句做些手脚,让他头尾相连。点击查......
  • 问题 F: 零基础学C/C++176——生日相同问题
    首先题目也很明确的要求了按照日期从前到后,若日期相同,则比的是名字从短到长顺序输出,长度相同的按字典序输出。如果没有生日相同的学生,输出None。所以这题的一大难点也就......
  • 问题 N: 零基础学C/C++159——最长字符串
    题目一点也不难哦,就是要学会二维数组的输入输出但是不知为何这题有一个很奇怪的坑,如果你是AC:83%那么恭喜你掉坑里了!!这道题目竟然有一个检测点在最后的时候加\n确实......
  • 问题 M: 零基础学C/C++158——删除中间的*
    思路很简单,但实现起来有点麻烦。将前面2题融合(前两题我就觉得没必要放了哈哈哈哈),保留前面与后面的*都改成删除即可。你会发现我的代码是前两个的融合。要学会融会贯通鸭:......
  • C++ 何时需要使用 引用 & ?
    原因:在C++中,由于以下原因,变量通过引用传递:1)要修改调用者函数的局部变量:引用(或指针)允许被调用函数修改调用者函数的局部变量。例如,考虑以下示例程序,其......
  • C++ 关于size()和sizeof()的区别
    sizeof(a)返回的是对象占用内存的字节数,而a.size()是string类定义的一个返回字符串大小的函数,两个是完全不一样的概念。明确两者的概念和作用:1、size()函数:c++中,在获取字......