- 2024-07-19Arena Learning: 构建大语言模型的数据飞轮
大语言模型(LLMs)正在快速发展,但如何有效评估和持续改进这些模型仍面临巨大挑战。本文提出了一种名为ArenaLearning的创新方法,通过模拟聊天机器人竞技场来构建高效的数据飞轮,从而实现LLMs的持续优化。让我们深入了解这种方法的核心思想和关键技术。1.背景与挑战近年
- 2024-04-23大语言模型(LLM)评价指标小汇总
大语言模型(LLM)评价指标小汇总(也许会更新)from:https://zhuanlan.zhihu.com/p/641416694目录总之就是接了个小项目,这些天统计了一些LLM评价指标,不算很全面,很多方法的具体操作都不是很熟悉,参考论文也没找全,大家就凑合着看:1.榜单、论文统计方法描述
- 2024-01-01Proximal Policy Optimization (PPO): A Robust and Efficient RL Algorithm
1.背景介绍ProximalPolicyOptimization(PPO)是一种强化学习(ReinforcementLearning,RL)算法,它在许多实际应用中表现出色,具有较强的鲁棒性和效率。在这篇文章中,我们将详细介绍PPO的核心概念、算法原理、具体实现以及潜在的未来趋势和挑战。1.1强化学习简介强化学习是一种
- 2023-12-27Neural Networks for Game AI: A Comprehensive Overview
1.背景介绍随着计算机游戏的不断发展和进步,游戏人工智能(AI)已经成为游戏开发中的一个重要组成部分。在过去的几十年里,游戏AI的研究和应用已经取得了显著的进展,但仍然面临着许多挑战。这篇文章将深入探讨神经网络在游戏AI中的应用和挑战,并提供一个全面的概述。神经网络是一种模仿生物
- 2023-12-27深度学习原理与实战:多模态深度学习简介
1.背景介绍深度学习是人工智能领域的一个重要分支,它通过模拟人类大脑中的神经网络学习和决策,实现了对大量数据的自动处理和分析。多模态深度学习则是深度学习的一个子领域,它关注于处理和分析多种类型的数据,如图像、文本、音频等。在过去的几年里,多模态深度学习已经取得了显著的进展
- 2023-12-27PyTorch for Natural Language Processing: A Complete Overview
1.背景介绍自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学与人工智能的一个分支,旨在让计算机理解、解析和生成人类语言。自然语言处理的主要任务包括文本分类、情感分析、命名实体识别、语义角色标注、语义解析、机器翻译、语音识别、语音合成、问答系统、对话系统等。
- 2023-12-26自然语言处理的未来:语义理解与知识图谱
1.背景介绍自然语言处理(NLP)是人工智能领域的一个重要分支,其主要研究如何让计算机理解和生成人类语言。随着大数据、深度学习等技术的发展,NLP领域取得了显著的进展。然而,目前的NLP技术仍然存在一些局限性,如无法理解语境、无法处理多义性等。因此,语义理解和知识图谱等技术成为了未
- 2023-12-25自然语言处理中的文本生成技术的未来趋势
1.背景介绍自然语言处理(NLP)是人工智能的一个重要分支,其主要目标是让计算机理解、生成和处理人类语言。文本生成是NLP中的一个重要任务,旨在根据给定的输入生成自然语言文本。随着深度学习和神经网络技术的发展,文本生成技术也得到了重要的进展。本文将探讨文本生成技术的未来趋势和挑