• 2024-10-14百度:LLM从宏动作中进行RLHF
  • 2024-10-12【面试经验】滴滴大模型面经
    本人只做点业务数据sft,做的更加偏向于粗糙业务,直接被拷打麻了,望佬看到可以给我指点一下现在有一个非常完备的sft指令集,你只能选择1w条,你如何选择数据来使模型的能力更加提升+完备?我们知道sft的时候尽量不要注入知识给模型,因为只希望sft可以提升模型的指令遵循的能力,注入
  • 2024-10-09大模型训练显存需求分析指南:从SFT到RLHF的实践之路
    引言随着大模型技术的快速发展,越来越多的研究者和开发者开始尝试自己训练或微调大模型。然而,大模型训练最大的门槛之一就是算力资源,特别是GPU显存的需求。本文将从实践角度出发,详细分析大模型训练中的显存需求,帮助读者更好地规划自己的训练资源。显存需求概览在大模型训
  • 2024-09-30终于!有人总结了大模型学习资料!
    大家好,八哥我发现了一个大模型学习的神库,包含大量LLM教材和资料,并绘制了学习路线图。可以帮助快速掌握大模型的应用和开发技巧。GitHub地址:https://github.com/mlabonne/llm-courseLLM基础知识1.机器学习之数学基石在踏足机器学习的殿堂之前,深入理解其背后的数学原
  • 2024-09-27RLHF 的启示:微调 LSTM 能更好预测股票?
    作者:老余捞鱼原创不易,转载请标明出处及原作者。写在前面的话:    在财务预测领域,准确预测股票价格是一项具有挑战性但至关重要的任务。传统方法通常难以应对股票市场固有的波动性和复杂性。这篇文章介绍了一种创新方法,该方法将长短期记忆(LSTM)网络与基于评分的
  • 2024-09-10大模型入门(六)—— RLHF微调大模型
    一、RLHF微调三阶段参考:https://huggingface.co/blog/rlhf1)使用监督数据微调语言模型,和fine-tuning一致。2)训练奖励模型奖励模型是输入一个文本序列,模型给出符合人类偏好的奖励数值,这个奖励数值对于后面的强化学习训练非常重要。构建奖励模型的训练数据一般是同一个数
  • 2024-09-10RLHF(带有人类反馈的强化学习)初探
    我的目标是,在决策游戏上学习某人风格,可以让人对战“带有某人风格”的AI,比如你可以在这里对战“sky风格的AI”,这样的效果。我最开始受到的启发来源于xbox的广告《爸爸的幽灵车》,已故人在游戏中留下的速度记录的固定轨迹。万般皆是命。感谢这个时代,我如果2020年底那次考研成功了,可能
  • 2024-08-12科大讯飞智文 2.0 版本发布;人工智能模型 Grok 2 测试版即将发布丨 RTE 开发者日报
       开发者朋友们大家好: 这里是「RTE开发者日报」,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享RTE(Real-TimeEngagement)领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「有看点的会议」,但内容仅代表编
  • 2024-07-24Enhancing Diffusion Models with Reinforcement Learning
    EnhancingDiffusionModelswithReinforcementLearningSep27,2023 | UncategorizedTL;DRTodaywe'regoingtotellyouallabout DRLX -ourlibraryforDiffusionReinforcementLearning!Releasedafewweeksago,DRLXisalibraryforscalabledist
  • 2024-07-03深度学习领域的名词解释:SOTA、端到端模型、泛化、RLHF、涌现 ..
    SOTA(State-of-the-Art)在深度学习领域,SOTA指的是“当前最高技术水平”或“最佳实践”。它用来形容在特定任务或领域中性能最优的模型或方法。随着研究进展,SOTA会不断被新的研究成果所超越。 非端到端模型非端到端模型指的是模型架构中包含多个分离的组件或步骤,每个
  • 2024-06-30(六)大模型RLHF:PPO原理与源码解读
    大模型RLHF:PPO原理与源码解读原文链接:图解大模型RLHF系列之:人人都能看懂的PPO原理与源码解读本文直接从一个RLHF开源项目源码入手(deepspeed-chat),根据源码的实现细节,给出尽可能丰富的训练流程图,并对所有的公式给出直观的解释。希望可以帮助大家更具象地感受RLHF的训练流程。关
  • 2024-06-30(五)DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
    DeepSpeedChat:一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍如需引用DeepSpeedChat,请引用我们的arxivreport:@article{yao2023dschat,title={{DeepSpeed-Chat:Easy,FastandAffordableRLHFTrainingofChatGPT-likeModelsatAllScales}},autho
  • 2024-06-19将强化学习重新引入 RLHF
    我们很高兴在TRL中介绍RLOO(REINFORCELeaveOne-Out)训练器。作为一种替代PPO的方法,RLOO是一种新的在线RLHF训练算法,旨在使其更易于访问和实施。特别是,RLOO需要的GPU内存更少,并且达到收敛所需的挂钟时间也更短。如下面的图表所示:
  • 2024-06-12大模型「训练」与「微调」概念详解【6000字长文】
    本文你将学到什么1、大模型预训练与微调的基本流程2、预训练、训练、后期预训练、微调的区别3、大模型训练与微调的一些概念,如:Post-pretrain、SFT、RLHF、模型对齐、Lora、Q-Lora、大模型量化、微调指标、微调参数、大模型评测指标预训练与微调概览在大模型的预训练与微
  • 2024-05-31RLHF(从人类反馈中进行强化学习)详解(一)
    初步认知RLHF,即ReinforcementLearningfromHumanFeedback(从人类反馈中进行强化学习),是一种结合了机器学习中的强化学习算法与人类主观判断的训练技术。这种方法旨在利用人类的直觉和判断力来指导人工智能系统学习更复杂、更贴近人类期望的行为模式,尤其是在自然语言处理(NLP)和
  • 2024-05-31[论文阅读] Aligner@ Achieving Efficient Alignment through Weak-to-Strong Correction
    Pretitle:Aligner:AchievingEfficientAlignmentthroughWeak-to-StrongCorrectionsource:Arxiv2024paper:https://arxiv.org/abs/2402.02416code:https://aligner2024.github.io/ref:https://mp.weixin.qq.com/s/O9PP4Oc_Ee3R_HxKyd31Qg关键词:LLM,align,fin
  • 2024-04-16trl for RLHF
  • 2024-04-16ORPO偏好优化:性能和DPO一样好并且更简单的对齐方法
    现在有许多方法可以使大型语言模型(LLM)与人类偏好保持一致。以人类反馈为基础的强化学习(RLHF)是最早的方法之一,并促成了ChatGPT的诞生,但RLHF的成本非常高。与RLHF相比,DPO、IPO和KTO的成本明显更低,因为它们不需要奖励模型。虽然DPO和IPO的成本较低,但它们仍需训练两个不同的模型。首
  • 2024-04-09OpenAI的秘密武器、ChatGPT背后功臣RLHF,被开源了
    OpenAI的秘密武器、ChatGPT背后功臣RLHF,被开源了。来自HuggingFace、加拿大蒙特利尔Mila研究所、网易伏羲AILab的研究人员从零开始复现了OpenAI的RLHFpipeline,罗列了25个关键实施细节。最终成功展示了随着模型大小的增加,响应质量显著提升的scaling行为,其中2.8B、6.9B的P
  • 2024-04-02第二期书生浦语大模型实战营第一次作业(大模型技术报告解读)
    书生·浦语大模型全链路开源体系上海人工智能实验室与商汤科技联合香港中文大学、复旦大学发布新一代大语言模型书生·浦语2.0(InternLM2)。这个大模型包含70亿和200亿两种参数规格,以及基座、对话等版本,向全社会开源并提供免费商用授权。书生·浦语2.0(英文名:InternLM2)核心理念:
  • 2024-03-30[InternLM训练营第二期笔记]1. 书生·浦语大模型全链路开源开放体系
    由于想学习一下LLM相关的知识,真好看到上海AILab举行的InternLM训练营,可以提高对于LLM的动手能力。每次课堂都要求笔记,因此我就想在我的CSDN上更新一下,希望和感兴趣的同学共同学习~本次笔记是第一节课,介绍课。课程视频:BilibiliInternLM2Technicalreport:arxiv1.
  • 2024-02-27AI与人类联手,智能排序人类决策:RLHF标注工具打造协同标注新纪元,重塑AI训练体验
    AI与人类联手,智能排序人类决策:RLHF标注工具打造协同标注新纪元,重塑AI训练体验在大模型训练的RLHF阶段,需要人工对模型生成的多份数据进行标注排序,然而目前缺乏开源可用的RLHF标注平台。RLHF标注工具是一个简单易用的,可以在大模型进行RLHF(基于人类反馈的强化学习)标注排序的
  • 2024-02-13LLM与强化学习(一)
    很早之前就想了解一下LLM到底是怎么和强化学习结合的,今天凑巧查资料的时候看到亚马逊的一篇文章,把知识点整理记录一下。1什么是RLHFRLHF代表“ReinforcementLearningfromHumanFeedback”,即基于人类反馈的强化学习。它是一种机器学习技术,利用人类反馈来优化模型,从而更有效
  • 2024-02-02ChatGPT 背后的“功臣”——RLHF 技术详解
    OpenAI推出的ChatGPT对话模型掀起了新的AI热潮,它面对多种多样的问题对答如流,似乎已经打破了机器和人的边界。这一工作的背后是大型语言模型(LargeLanguageModel,LLM)生成领域的新训练范式:RLHF(ReinforcementLearningfromHumanFeedback),即以强化学习方式依据人类反馈
  • 2024-01-31LLM面面观之RLHF平替算法DPO
    1.背景最近本qiang~老看到一些关于大语言模型的DPO、RLHF算法,但都有些云里雾里,因此静下心来收集资料、研读论文,并执行了下开源代码,以便加深印象。此文是本qiang~针对大语言模型的DPO算法的整理,包括原理、流程及部分源码。2.DPOvsRLHF  上图左边是RLHF算法,右边为DPO算