Np
  • 2024-11-21习题8.8
    点击查看代码importnumpyasnpimportpylabasplta=1-0.2**(1/12);m=1.109*10**5w3=17.86;w4=22.99X=[];Z=[];N=[]forkinnp.arange(0,1.0,0.001):x1=1.22*10**11*(1-1/(m*(1-a-0.42*k)**8*(1-a)**24*(1/2+(1-a-k)**8*(1-a)**4
  • 2024-11-21Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
    主要学习两个流行的建模工具包,statsmodels和scikit-learn。一、pandas与模型代码之间的接口模型开发的常见工作流程是使用pandas进行数据加载和清理,然后再切换到建模库来构建模型本身。模型开发过程的一个重要部分在机器学习中称为特征工程,这可以描述从原始数据集中提取
  • 2024-11-20CVXPY and SCIPY for Python
    Weconsiderthefollowingproblem:\[\begin{align}&\underset{x}{\min}~c^Tx\\&{\rm}\quadAx\leb.\end{align}\]#Importpackages.importtimeimportcvxpyascpimportnumpyasnpimportscipy.optimizeasop#
  • 2024-11-20OpenCV-Python Harris 角点检测
    原理在上一节我们已经知道了角点的一个特性:向任何方向移动变化都很大。Chris_Harris和Mike_Stephens早在1988年的文章《ACombinedCornerandEdgeDetector》中就已经提出了焦点检测的方法,被称为Harris角点检测。他把这个简单的想法转换成了数学形式。将窗口向
  • 2024-11-19深入理解 LMS 算法:自适应滤波与回声消除
    深入理解LMS算法:自适应滤波与回声消除在信号处理领域,自适应滤波是一种重要的技术,广泛应用于噪声消除、回声消除和信号恢复等任务。LMS(LeastMeanSquares)算法是实现自适应滤波的经典方法之一。本文将详细介绍LMS算法的原理,包括公式推导,并通过Python代码示例展示其在
  • 2024-11-19基于共轭梯度法的 BP 网络学习改进算法详解
    基于共轭梯度法的BP网络学习改进算法详解一、引言BP(BackPropagation)神经网络是一种强大的机器学习工具,广泛应用于模式识别、函数逼近、数据分类等领域。然而,传统的BP算法在训练过程中存在一些问题,例如收敛速度慢、容易陷入局部最优解等。共轭梯度法作为一种高效的优
  • 2024-11-18centos7创建逻辑卷
    1.fdisk/dev/sdb 创建分区 2. p:查看分区n:创建新分区p(1-4):1输入起始号码2048开始扇区+1600M结束扇区w保存3. l 查看分区类型8e 设置成lvm格式。4.创建物理卷  pvcreate/dev/sdb1查看物理卷pvdisplay/dev/sdb15. 创建卷组 vgcreatenpgroup/d
  • 2024-11-182.6
    importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3D模拟高程数据(假设数据已经过某种方式插值或生成)这里我们创建一个简单的40x50网格,并填充随机高程值x=np.linspace(0,43.65,40)y=np.linspace(0,58.2,50)X,Y=np.meshgr
  • 2024-11-182.1
    importnumpyasnpimportmatplotlib.pyplotasplt定义x的范围x=np.linspace(-5,5,400)计算三个函数的值y_cosh=np.cosh(x)y_sinh=np.sinh(x)y_half_exp=0.5*np.exp(x)创建图形和坐标轴plt.figure(figsize=(10,6))ax=plt.gca()绘制函数ax.plot(x,
  • 2024-11-184.3
    importmatplotlib.pyplotaspltimportnumpyasnpimportcvxpyascpx=cp.Variable(6,pos=True)obj=cp.Minimize(x[5])a1=np.array([0.025,0.015,0.055,0.026])a2=np.array([0.05,0.27,0.19,0.185,0.185])a3=np.array([1,1.01,1.02,1.045,1.065])k=0.05
  • 2024-11-187.1
    importnumpyasnpimportscipy.interpolateasspiimportscipy.integrateasspi_integratedefg(x):return((3x**2+4x+6)*np.sin(x))/(x**2+8*x+6)生成x值x_values=np.linspace(0,10,1000)计算对应的y值y_values=g(x_values)创建三次样条插值spl
  • 2024-11-187.40
    importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.interpolateimportgriddatadeff(x,y):x2=x2return(x2-2*x)*np.exp(-x2-y2-x*y)x_min,x_max=-3,3y_min,y_max=-4,4num_points=1000x_random=np.random.uniform(x_min,x_max
  • 2024-11-187
    7.1点击查看代码#学号17importnumpyasnpimportscipy.interpolateasspiimportscipy.integrateasspi_integratedefg(x):return((3*x**2+4*x+6)*np.sin(x))/(x**2+8*x+6)x_values=np.linspace(0,10,1000)y_values=g(x_values)spline=
  • 2024-11-187.3
    importnumpyasnpfromscipy.interpolateimportinterp1d,interp2d,UnivariateSpline,griddataimportmatplotlib.pyplotaspltt0=np.linspace(700,780,5)v0=np.array([0.0977,0.1218,0.1406,0.1551,0.1664])f1=interp1d(t0,v0)f2=interp1d(t0,v
  • 2024-11-188.5
    importnumpyasnpimportpandasaspdimportsympyasspsp.init_printing(use_latex=True)fromscipy.integrateimportodeintimportmatplotlib.pyplotaspltplt.rcParams['font.sans-serif']=['TimesNewRoman+SimSun+WFMSansSC']pl
  • 2024-11-187.4
    importnumpyasnpfromscipy.interpolateimportinterp1d,interp2d,UnivariateSpline,griddataimportmatplotlib.pyplotaspltnp.random.seed(114514)x0=np.random.uniform(-3,3,50)y0=np.random.uniform(-4,4,50)f=lambdax,y:(x2-2x)np.exp(-x2
  • 2024-11-188.9
    fromscipy.integrateimportodeintimportnumpyasnpimportpylabaspltnp.random.seed(2)#为了进行一致性比较,每次运行取相同随机数sigma=10;rho=28;beta=8/3;g=lambdaf,t:[sigma(f[1]-f[0]),rhof[0]-f[1]-f[0]f[2],f[0]f[1]-beta*f[2]]#定义微分方程组的右
  • 2024-11-187.4(学号:3025)
    importnumpyasnpfromscipy.interpolateimportinterp1d,interp2d,UnivariateSpline,griddataimportmatplotlib.pyplotaspltnp.random.seed(114514)x0=np.random.uniform(-3,3,50)y0=np.random.uniform(-4,4,50)f=lambdax,y:(x2-2x)np.exp(-x2
  • 2024-11-187.3(学号:3025)
    importnumpyasnpfromscipy.interpolateimportinterp1d,interp2d,UnivariateSpline,griddataimportmatplotlib.pyplotaspltt0=np.linspace(700,780,5)v0=np.array([0.0977,0.1218,0.1406,0.1551,0.1664])f1=interp1d(t0,v0)f2=interp1d(t0,v
  • 2024-11-188.5(学号:3025)
    importnumpyasnpimportpandasaspdimportsympyasspsp.init_printing(use_latex=True)fromscipy.integrateimportodeintimportmatplotlib.pyplotaspltplt.rcParams['font.sans-serif']=['TimesNewRoman+SimSun+WFMSansSC']pl
  • 2024-11-18第七章
    7.3importnumpyasnpimportpandasaspdfromscipy.interpolateimportinterp1d,interp2d,UnivariateSpline,griddatafromscipy.optimizeimportleast_squares,curve_fitfromscipy.integrateimportquadimportmatplotlib.pyplotaspltplt.rcParams[
  • 2024-11-18第八章习题
    习题8.4importnumpyasnpimportpandasaspdimportsympyasspsp.init_printing(use_latex=True)fromscipy.integrateimportodeintimportmatplotlib.pyplotaspltplt.rcParams['font.sans-serif']=['TimesNewRoman+SimSun+WFMSansSC
  • 2024-11-18第七章例题及习题
    例7.3importnumpyasnpimportpylabaspltfromscipy.interpolateimportlagrangeyx=lambdax:1/(1+x**2)deffun(n):x=np.linspace(-5,5,n+1)p=lagrange(x,yx(x))returnpx0=np.linspace(-5,5,100)plt.rc('text',usetex=True)plt.rc(&
  • 2024-11-18manim边做边学--球体
    Sphere类用于创建三维球体对象,它提供了丰富的参数和方法来定制球体的外观和行为。球体在制作三维动画时,具有广泛的应用场景。比如:展示几何概念:通过创建不同大小、颜色和透明度的球体,可以直观地展示几何中的体积、表面积等概念物理模拟:在模拟物理现象(如重力、碰撞等)时,可以使用
  • 2024-11-177.1 7.3 7.4 7.7 7.10
    7.1点击查看代码importnumpyasnpimportscipy.interpolateasspiimportscipy.integrateasspi_integratedefg(x):return((3*x**2+4*x+6)*np.sin(x))/(x**2+8*x+6)x_values=np.linspace(0,10,1000)y_values=g(x_values)spline=spi.C