首页 > 编程语言 >基于拉普拉斯变换的信号处理(Python)

基于拉普拉斯变换的信号处理(Python)

时间:2025-01-06 12:29:43浏览次数:3  
标签:cutoff plt Python 拉普拉斯 信号处理 0.5 transform np signal

本例子使用巴特沃斯低通滤波器对信号进行滤波,使用汉宁窗绘制信号的STFT,然后进行拉普拉斯变换

构造个模拟信号,采样频率率为50Hz,持续10s。

import numpy as np

sample_rate = 50  # 50 Hz resolution
signal_lenght = 10*sample_rate  # 10 seconds
# Generate a random x(t) signal with waves and noise. 
t = np.linspace(0, 10, signal_lenght)
g = 30*( np.sin((t/10)**2) )
x  = 0.30*np.cos(2*np.pi*0.25*t - 0.2) 
x += 0.28*np.sin(2*np.pi*1.50*t + 1.0)
x += 0.10*np.sin(2*np.pi*5.85*g + 1.0)
x += 0.09*np.cos(2*np.pi*10.0*t)
x += 0.04*np.sin(2*np.pi*20.0*t)
x += 0.15*np.cos(2*np.pi*135.0*(t/5.0-1)**2)
x += 0.04*np.random.randn(len(t))
# Normalize between -0.5 to 0.5: 
x -= np.min(x)
x /= np.max(x)
x -= 0.5

使用4阶巴特沃斯低通滤波器进行滤波(只保留低于15Hz的信号)

from scipy import signal

import matplotlib.pyplot as plt
%matplotlib inline 

def butter_lowpass(cutoff, nyq_freq, order=4):
    normal_cutoff = float(cutoff) / nyq_freq
    b, a = signal.butter(order, normal_cutoff, btype='lowpass')
    return b, a

def butter_lowpass_filter(data, cutoff_freq, nyq_freq, order=4):
    b, a = butter_lowpass(cutoff_freq, nyq_freq, order=order)
    y = signal.filtfilt(b, a, data)
    return y

# Filter signal x, result stored to y: 
cutoff_frequency = 15.0
y = butter_lowpass_filter(x, cutoff_frequency, sample_rate/2)

# Difference acts as a special high-pass from a reversed butterworth filter. 
diff = np.array(x)-np.array(y)

# Visualize
plt.figure(figsize=(11, 9))
plt.plot(x, color='red', label="Original signal, {} samples".format(signal_lenght))
plt.plot(y, color='blue', label="Filtered low-pass with cutoff frequency of {} Hz".format(cutoff_frequency))
plt.plot(diff, color='gray', label="What has been removed")
plt.title("Signal and its filtering")
plt.xlabel('Time (1/50th sec. per tick)')
plt.ylabel('Amplitude')
plt.legend()
plt.show()

绘制STFT时频谱图( Hanning窗)

import scipy


def stft(x, fftsize=1024, overlap=4):
    # Short-time Fourier transform
    hop = fftsize / overlap
    w = scipy.hanning(fftsize+1)[:-1]      # better reconstruction with this trick +1)[:-1]  
    return np.array([np.fft.rfft(w*x[i:i+fftsize]) for i in range(0, len(x)-fftsize, hop)])


def plot_stft(x, title, interpolation='bicubic'):
    # Use 'none' interpolation for a sharp plot. 
    plt.figure(figsize=(11, 4))
    sss = stft(np.array(x), window_size, overlap)
    complex_norm_tape = np.absolute(sss).transpose()
    plt.imshow(complex_norm_tape, aspect='auto', interpolation=interpolation, cmap=plt.cm.hot)
    plt.title(title)
    plt.xlabel('Time (1/50th sec. per tick)')
    plt.ylabel('Frequency (Hz)')
    plt.gca().invert_yaxis()
    # plt.yscale('log')
    plt.show()


window_size = 50  # a.k.a. fftsize
overlap = window_size  # This takes a maximal overlap

# Plots in the STFT time-frequency domain: 
plot_stft(x, "Original signal")
plot_stft(y, "Filtered signal")
plot_stft(diff, "Difference (notice changes in color due to plt's rescaling)")

绘制拉普拉斯变换谱

def laplace_transform(x, real_sigma_interval=np.arange(-1, 1 + 0.001, 0.001)):
    # Returns the Laplace transform where the first axis is the real range and second axis the imaginary range. 
    # Complex numbers are returned. 
    
    x = np.array(x)[::-1]  # The transform is from last timestep to first, so "x" is reversed
    
    d = []
    for sigma in real_sigma_interval:
        exp = np.exp( sigma*np.array(range(len(x))) )
        exp /= np.sum(exp)
        exponentiated_signal = exp * x
        # print (max(exponentiated_signal), min(exponentiated_signal))
        d.append(exponentiated_signal[::-1])  # re-reverse for straight signal
    
    # Now apply the imaginary part and "integrate" (sum)
    return np.array([np.fft.rfft(k) for k in d])


l = laplace_transform(x).transpose()

norm_surface = np.absolute(l)
angle_surface = np.angle(l)

# Plotting the transform: 

plt.figure(figsize=(11, 9))
plt.title("Norm of Laplace transform")
plt.imshow(norm_surface, aspect='auto', interpolation='none', cmap=plt.cm.rainbow)
plt.ylabel('Imaginary: Frequency (Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.gca().invert_yaxis()
plt.colorbar()

plt.figure(figsize=(11, 9))
plt.title("Phase of Laplace transform")
plt.imshow(angle_surface, aspect='auto', interpolation='none', cmap=plt.cm.hsv)
plt.ylabel('Imaginary (Frequency, Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.gca().invert_yaxis()
plt.colorbar()
plt.show()

plt.figure(figsize=(11, 9))
plt.title("Laplace transform, stacked phase and norm")
plt.imshow(angle_surface, aspect='auto', interpolation='none', cmap=plt.cm.hsv)
plt.ylabel('Imaginary: Frequency (Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.colorbar()
plt.gca().invert_yaxis()
# Rather than a simple alpha channel option, I would have preferred a better transfer mode such as "multiply". 
plt.imshow(norm_surface, aspect='auto', interpolation='none', cmap=plt.cm.gray, alpha=0.9)
plt.ylabel('Imaginary: Frequency (Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.gca().invert_yaxis()
plt.colorbar()
plt.show()

plt.figure(figsize=(11, 9))
plt.title("Log inverse norm of Laplace transform")
plt.imshow(-np.log(norm_surface), aspect='auto', interpolation='none', cmap=plt.cm.summer)
plt.ylabel('Imaginary: Frequency (Hz)')
plt.xlabel('Real (exponential multiplier)')
plt.xticks([0, 500, 1000, 1500, 2000], [-1, -0.5, 0.0, 0.5, 1.0])
plt.gca().invert_yaxis()
plt.colorbar()
plt.show()

学术咨询:

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

 基于平滑滤波器(移动平均滤波器和Savitzky-Golay滤波器)的信号降噪(MATLAB)

完整代码可通过学术咨询获得:

标签:cutoff,plt,Python,拉普拉斯,信号处理,0.5,transform,np,signal
From: https://blog.csdn.net/2301_78829506/article/details/144960517

相关文章