ADC
  • 2024-06-23模拟集成电路设计系列博客——7.3.1 并联比较型ADC基本介绍
    7.3.1并联比较型ADC基本介绍并联比较型ADC(后续都称作FlashADC)是实现超高速转换器的标准方式。FlashADC的输入信号被并行的馈入\(2^N\)个比较器中,如下图所示:每个比较器被连接到电阻串的节点上。任何连接到电阻串节点的比较器,如果\(V_{ri}\)大于\(V_{in}\)有着1的输出,而\(V_{r
  • 2024-06-21DSP28335的ADC模块
    ADC模块一、ADC时钟分频 //使能ADC外设时钟EALLOW;SysCtrlRegs.PCLKCR0.bit.ADCENCLK=1;EDIS;//高速外设时钟HSPCLK=SYSCLKOUT/(2*HISPCP)=25MHzEALLOW;SysCtrlRegs.HISPCP.bit.HSPCLK=3;EDIS;//FCLK=HSPCLK/(2*ADCCLKPS)=12.5MHzAdcRegs.ADC
  • 2024-06-21TMS320F28335的ADC模块
    1 ADC简介英文全称Analog-to-DigitalConverter,模数转换器2 时钟配置外围时钟HSPCLK,通过HISCP来设置SysCtrlRegs.HISCP.all=3;设置为0时,不分频其他都为sysclk/2xHSPCLK=sysclk/(3*2)=150/6=25MHz此时还需要在进行一次分频通过设置ADCTRL3的ADCCLKP
  • 2024-06-19模拟集成电路设计系列博客——7.2.3 每阶段k-bit流水线ADC
    7.2.3每阶段k-bit流水线ADC通过增加中间级增益和每级的比较器可以在每级解析多于1比特。信号流图类似之前介绍的每次迭代2比特的逐次逼近型ADC。一个通用的k比特级如下图所示:k比特副ADC的非线性可以通过增加额外的比较器通过数字方式来校正,类似于每级1.5比特架构[Lewis,1992]
  • 2024-06-18Sigma-Delta ADC芯片 国产ADC芯片推荐
    SC1641三通道24位ADC高精度Sigma-DeltaADC:16~24bit,4SPS~125kSPS,1~16通道,已量产输入带宽有限低采样率高精度性能24bit出色的DNL和INL性能典型应用:测温、测重、化学分析、生物信号、电流监测等,适合各类传感器应用主要性能:•最高24位分辨率•更
  • 2024-06-15基于STM32和人工智能的智能家居监控系统
    目录引言环境准备智能家居监控系统基础代码实现:实现智能家居监控系统4.1数据采集模块4.2数据处理与分析4.3控制系统4.4用户界面与数据可视化应用场景:智能家居环境监控与管理问题解决方案与优化收尾与总结1.引言随着智能家居技术的发展,智能家居监控系统在提升家居安
  • 2024-06-14模拟集成电路设计系列博客——7.1.6 多比特SAR ADC
    7.1.6多比特SARADC我们目前讨论的逐次逼近型ADC在每个周期都通过单次的比较将搜索空间一分为二。这个搜索可以通过在每个周期进行多次比较来实现加速,每次将搜索空间切分为更小的区域。例如,如果我们想要猜测一个1到128之间的数时,我们除了提问“这个数是否大于64”,还可以同时提问
  • 2024-06-14模拟集成电路设计系列博客——7.1.5 SAR ADC中的错误纠正
    7.1.5SARADC中的错误纠正片上部件的最佳匹配精度可以达到百分之0.1,但是这对于有着10比特及以上精度的SARADC来说仍然不够,因此需要一种校正手段。其中一种用于获得16比特线性ADC的错误纠正方式如下图所示[Lee,1984]:在这种方式中,MSB部分通过二进制权重电容阵列来实现,例如,这个
  • 2024-06-14模拟集成电路设计系列博客——7.1.4 电荷重分布SAR ADC的速度估计
    7.1.4电荷重分布SARADC的速度估计电荷重分布SARADC的主要速度限制来自于电容阵列和开关构成的RC时间常数。为了估计这个时间,考虑电容阵列复位后的简化模型,如下图所示:此处\(R\),\(R_{s1}\)和\(R_{s2}\)表示位线,\(S_1\)和\(S_2\)开关上的开态电阻,相对的,尽管这个电路很容易就可
  • 2024-06-14模拟集成电路设计系列博客——7.1.3 电阻电容混合SAR ADC
    7.1.3电阻电容混合SARADC在DAC中组合使用电阻串和电容阵列的方式同样可以在ADC中使用,一种实现[Fotouhi,1979]如下图所示:第一步是将所有的电容都充电到\(V_{in}\)并重置比较器,接着,通过逐次逼近的方式来查找两个相邻的电阻节点具有大于和小于\(V_{in}\)的电压。使用两根总线,分
  • 2024-06-14模拟集成电路设计系列博客——7.1.2 基于电荷重分布的SAR ADC
    7.1.2基于电荷重分布的SARADC实现SARADC最直接的方式是使用一个独立的DAC,并将其设置等于输入电压(在一个LSB范围内)进而修改流程图如下:首个用这种方式实现的开关电容模拟系统即所谓的电荷重分布MOSADC[McCreary,1975]。通过这个转换器,采样和保持电路,DAC,以及比较器被组合在了
  • 2024-06-13034【GD32F470】MQ-3酒精检测传感器STM32移植教程
    2.31MQ-3酒精检测传感器MQ-3气体传感器所使用的气敏材料是在清洁空气中电导率较低的二氧化锡(Sn0)。当传感器所处环境中存在酒精蒸气时,传感器的电导率随空气中酒精蒸气浓度的增加而增大。使用简单的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。2.31.1
  • 2024-06-13模拟集成电路设计系列博客——7.1.1 逐次比较型ADC基本介绍
    7.1.1逐次比较型ADC基本介绍实现数模转换器(ADC)的架构可以粗略的分成三种,如下表所示,分别为低到中速ADC,中速ADC和高速ADC:在开始之前,需要注意在讨论ADC设计时,我们一般会忽略AD传输特性中的0.5LSB偏移。采用这个简化是为了不将暂时的概念复杂化。许多转换器架构大量使用了开关电容
  • 2024-06-12【STM32F1例程3】ADC实验
    1.实验说明 PA4口作为ADC采集口,PA4口接地或者接3.3V。下载运行程序,PA4口接地,会发现VolDta值为0,然后把PA4口接3.3V,会发现VolDta值为33002.主要程序直接上main.c#include"delay.h"#include"sys.h"//ADC配置,ADC1通道4voidADC_Config_Init(void){ ADC_InitTypeDef
  • 2024-06-11《DSP开发》TMS320F28XX-ADC模块
    1.1、特征1.2、功能框图2.1、ADC模块配置1、ADC时钟使能。ADC时钟没有使能的话,后续对ADC相关寄存器的配置值虽然被写入,但实际不会生效。2、校准ADC参考、DAC偏移和内部振荡器。Device_cal();3、配置ADC模块转换误差、参考模式、参考基准、时钟分频、ADC中断触发时刻,最
  • 2024-06-09一些小问题汇总
    1.区分&与&&、什么是短路求值2.值<<移动的位数(十六进制下的位操作)#defineADC_SR_AWD_Pos(0U)#defineADC_SR_AWD_Msk(0x1UL<<ADC_SR_AWD_Pos)/*!<0x00000001*/#defineADC_SR_AWDADC_SR_AWD_Msk
  • 2024-06-06SAR ADC驱动设计注意事项
    1SARADC特点      功耗低、小尺寸、高精度、速度适中以及采样延时短。2精密SARADC所需支持电路        模拟输入信号、ADC接口的前端、基准电压源和数字接口        前端由驱动放大器+RC滤波器组成,其中放大器:调节输入信号,同事充当信号和ADC
  • 2024-06-06stm32系列--ADC使用
      #include"adc.h"#include"delay.h"////////////////////////////////////////////////////////////////////////////////////本程序只供学习使用,未经作者许可,不得用于其它任何用途//ALIENTEK战舰STM32开发板//ADC代码//正点原子@ALIENTEK//技术论
  • 2024-06-05【Microelectronic Systems】期末速通
    PART1嵌入式系统概述与玩转mbed1嵌入式系统,微控制器,与ARM1.1什么是嵌入式系统?微处理器不仅仅存在于通用计算机中,也可以安置在一些不需要计算的设备内部,比如洗衣机,摄像机。微处理器常常可以控制这些产品。因为这类产品的微处理器镶嵌在内部,所以称这类产品为嵌入式系统。
  • 2024-06-05STM32H743 ADC+DMA
    1.**STM32CubeMX配置如下:**ADC:配置通道配置ADC的工作模式,这里用到了DMA使用ADC中断DMA2的通道4对应ADC2GPIO的配置,没有配置上下拉DMA配置:用STM32H743用DMA传输ADC的数据会有一个需要注意的点,需要将传输数据的buf配置在固定的某一段RAM中。#defineADC_CONVE
  • 2024-06-04FOC 控制
    FOC简介FOC(Field-OrientedControl),直译是磁场定向控制,也被称作矢量控制(VC,VectorControl),是目前无刷直流电机(BLDC)和永磁同步电机(PMSM)高效控制的最优方法之一。FOC旨在通过精确地控制磁场大小与方向,使得电机的运动转矩平稳、噪声小、效率高,并且具有高速的动态响应。简单来说,FO
  • 2024-06-03STM32——ADC篇(ADC的使用)
    一、ADC的介绍 1.1什么是ADC        ADC(Analogto-DigitalConverter)模拟数字转换器,是将模拟信号转换成数字信号的一种外设。比如某一个电阻两端的是一个模拟信号,单片机无法直接采集,此时需要ADC先将短租两端的电压这个模拟信号转化成数字信号,单片机才能够进行处理。
  • 2024-06-03STC8H2K系列采用ADC功能实现轻触感应按键(无需电阻电容二极管)
    有感于8H2K系列不自带触摸控制器按键功能(8H4K,8H8K自带),如果要实现这个功能需要使用官方建议的两个IO口(一个PWM另一个ADC)还有一堆外围元器件(电阻电容二极管),这样的设计确实繁琐而且累赘,占用空间也大(如果有这空间我也不会选8H2K)。参考了另一个网友设计,线路减少到一个电容一个电阻,
  • 2024-06-03基于单片机大气压监测报警系统电路方案设计
    **单片机设计介绍,基于单片机大气压监测报警系统电路方案设计文章目录一概要二、功能设计设计思路三、软件设计原理图五、程序六、文章目录一概要  基于单片机大气压监测报警系统电路方案设计概要如下:一、系统概述本设计旨在通过单片机技术实现对大气压
  • 2024-06-01ch58x/ch59xADC差分采样NTC电阻获取当前温度
    前言:之前的文章中也有关于使用I2C器件进行温度的采集的文章采集温度的方式不止使用传感器,也可以使用NTC温敏电阻进行采集,此方法的外围电路较为简单切成本较低,代码也较为容易实现。实现原理:先通过差分采样电路进行采集,采集之后可以获取NTC或者定值电阻的电压;已知这些信息可以通过