- 2024-10-09RT-DETR改进|爆改模型|涨点|使用VMamba作为骨干网络(附代码+修改教程)
一、文本介绍本文修改的模型是RT-DETR,在原本的RT-DETR中,使用ResNet作为骨干网络,本文使用最新的VMamba(VisualStateSpaceModel)替换ResNet作为RT-DETR的骨干网络。VMamba是一种全新的视觉框架,VMamba结合了CNNs和ViTs的优势,同时优化了计算效率,能够在保持全局感受野的情况下实
- 2024-09-13爆改YOLOv8|使用MobileViTv1替换Backbone
1,本文介绍MobileNetV1是一种轻量级卷积神经网络,旨在提高计算效率。它的核心是深度可分离卷积,将传统卷积分解为深度卷积和逐点卷积,从而减少计算量和参数量。网络结构包括初始卷积层、多个深度可分离卷积层、全局平均池化层和全连接层。MobileNetV1的设计使其在资源受限的设备
- 2024-09-13爆改YOLOv8|使用MobileNetV4替换yolov8的Backbone
1,本文介绍MobileNetV4是最新的MobileNet系列模型,专为移动设备优化。它引入了通用反转瓶颈(UIB)和MobileMQA注意力机制,提升了推理速度和效率。通过改进的神经网络架构搜索(NAS)和蒸馏技术,MobileNetV4在多种硬件平台上实现了高效和准确的表现,在ImageNet-1K数据集上达到87%
- 2024-09-10爆改YOLOv8|利用BiFPN双向特征金字塔改进yolov8
1,本文介绍BiFPN(BidirectionalFeaturePyramidNetwork)是一种增强特征金字塔网络(FPN)的方法,旨在改善多尺度特征融合。BiFPN的主要创新点包括:双向特征融合:与传统FPN仅在自下而上的方向进行特征融合不同,BiFPN引入了双向融合机制。它不仅从低层特征向高层传递信息,还从高层特征向
- 2024-08-17爆改YOLOv8 | yolov8添加GAM注意力机制
1,本文介绍GAM(GlobalAttentionMechanism)旨在改进传统注意力机制的不足,特别是在通道和空间维度上的信息保留问题。它通过顺序的通道-空间注意力机制来解决这些问题。以下是GAM的关键设计和实现细节:通道注意力子模块:3D排列:使用3D排列来在三个维度上保留信息,这种方法有助于捕
- 2024-08-17爆改YOLOv8 || 利用Gold-YOLO提高YOLOv8对小目标检测精度
1,本文介绍Gold-YOLO通过一种创新的 聚合-分发(Gather-and-Distribute,GD)机制 来提高信息融合效率。这一机制利用卷积和自注意力操作来处理来自网络不同层的信息。通过这种方式,Gold-YOLO能够更有效地融合多尺度特征,实现低延迟和高准确性之间的理想平衡.关于GOLD-YOLO的详细
- 2024-08-15爆改YOLOv8 | yolov8添加CBAM注意力机制
1,.本文介绍CBAM的主要思想是通过关注重要的特征并抑制不必要的特征来增强网络的表示能力。模块首先应用通道注意力,关注"重要的"特征,然后应用空间注意力,关注这些特征的"重要位置"。通过这种方式,CBAM有效地帮助网络聚焦于图像中的关键信息,提高了特征的表示力度.以下为CBAM结构