在 ByteLand 中,沿轴有 n(≤ 105) 个城市,第 i 个城市位于 (A₁,0)(对于 1≤ i ≤ n,A≤ 10°)。 在ByteLand,有一家制造无线电塔的电信公司。每个塔的覆盖半径为 d,即,当且仅当 x - y ≤ d 时,(y, 0) 处的塔可覆盖 (2,0) 处的城市。提示:1.目标解决方案基于动态规划,2.问题陈述本身包含有关如何定义 DP 函数的提示 该公司已确定 m(≤1200) 个可能放置无线电塔的位置。这些位置中的第 j 个位于 (B3, 0)(B;≤ 10°,对于 1≤ j ≤ m)。该公司只能在这些地点放置无线电塔。如果一个城市有多个塔提供服务,该公司也会面临困难。也就是说,假设有两个塔T1、T2使得某个城市A;位于两座塔的覆盖范围内。在这种情况下,A 中的设备将无法决定与 T1、T2 中的哪个塔进行通信。为了避免这个问题,他们想建造塔,这样这样的情况就永远不会发生 发生。 因此,该公司希望放置一些塔楼,以便 (i) 每个城市至少被一座塔楼覆盖,并且 (ii) 没有一个城市被超过一座塔楼覆盖。为了帮助他们找到这样的作业,请解决以下问题。 对于每个 1≤ k ≤ m 的整数 k,计算将无线电塔放置在 m 个给定位置中的 k 个位置的方法数,以便每个城市都被一个塔覆盖。由于答案可能很大,所以输出它对 109+7 取模,即,如果答案是 x,则打印 z 除以 109+7 时的余数。 暗示。您可能想要解决以下(看似更难)问题:对于每个整数 1≤ i ≤ m,且 1 ≤ j ≤ m,我们可以通过多少种方式选择塔位置,以便 (i) 最右边的塔位于 B[i ], (ii) B[1], B[2],... B[i] 中恰好选择了 j 个塔(包括 B[i]),并且 (iii) B[i] 左边的每个城市是唯一被塔覆盖的吗?看看你是否可以使用这些问题将原始问题简化为更小的子问题。示例解决方案的复杂度为 O(m² + n) 或 O(m² logn+n)。如果您的解决方案需要 (m³) 时间,那么您的期望分数将为 3.6/6.0。 输入输出 每个输入文件包含多个测试实例。第一行包含一个整数 C,表示测试实例的数量。 C 实例的描述如下。 每个测试实例由三行组成: • 第一行包含三个空格分隔的整数n、m、d。 • 第二行包含n 个空格分隔的整数A1, A2,... An。 • 第三行包含 m 个空格分隔的整数 B1, B2,... Bm • 保证城市和潜在塔位置按升序给出,即Ai > Ai-1 和B; > Bj-1 对于每个 1 <i<n 且 1<j≤m 成立。输出 m 个空格分隔的整数,其中第 i 个整数表示精确选择 i 个塔来唯一覆盖所有城市的方法数。 在此作业中,您将获得包含输入和输出代码的示例提交。您只需要完成一个函数,给定 d 以及城市和塔的位置,返回 m 个整数的数组。
5 5 2
1 2 3 4 5
1 2 3 4 5
0 2 0 0 0
说明:有两种方法可以覆盖城市。第一种方法是在 {1,4} 放置塔,第二种方法是在 {2,5} 放置塔。第一种方式中,A[1]、A[2] 处的城市仅被 B[1] 处的塔覆盖,而 A[3]、A[4]、A[5] 处的城市仅被 B[1] 处的塔覆盖。 B[5]。两种方式都需要 2 个塔。因此答案是{0,2,0,0,0}。
MOD = 10 ** 9 + 7
def compute_cost(A, B, i, d):
left = B[i] - d + 1
right = B[i] + d - 1
count = 0
for city in A:
if left <= city <= right:
count += 1 # This city is covered by this tower
return count
def solve_coverage(n, m, d, A, B):
dp = [[float('inf')] * (m + 1) for _ in range(m + 1)]
count_towers = [[0] * (m + 1) for _ in range(m + 1)]
for i in range(m + 1):
dp[0][i] = 0
count_towers[0][i] = 1
for t in range(1, m + 1):
for i in range(1, m + 1):
cost = compute_cost(A, B, i - 1, d)
dp[t][i] = cost + dp[t - 1][i - 1]
count_towers[t][i] = count_towers[t - 1][i - 1]
for j in range(i - 1, 0, -1):
cost = compute_cost(A, B, i - 1, d) - compute_cost(A, B, j - 1, d)
new_cost = dp[t - 1][j - 1] + cost
if new_cost < dp[t][i]:
dp[t][i] = new_cost
count_towers[t][i] = count_towers[t - 1][j - 1]
elif new_cost == dp[t][i]:
count_towers[t][i] = (count_towers[t][i] + count_towers[t - 1][j - 1]) % MOD
result = [0] * m
for t in range(1, m + 1):
result[t - 1] = dp[t][m] % MOD
return result
def main():
import sys
if len(sys.argv) != 2:
print("Usage: python telecom_towers.py <inputfile>")
return
inputfile = sys.argv[1]
with open(inputfile, 'r') as file:
data = file.read().split()
index = 0
C = int(data[index])
index += 1
results = []
for _ in range(C):
n = int(data[index])
m = int(data[index + 1])
d = int(data[index + 2])
index += 3
A = list(map(int, data[index:index + n]))
index += n
B = list(map(int, data[index:index + m]))
index += m
result = solve_coverage(n, m, d, A, B)
results.append(" ".join(map(str, result)))
for result in results:
print(result)
if __name__ == "__main__":
main()
MOD = 10**9 + 7
def solve_coverage(n, m, d, A, B):
"""
Calculates the number of ways to place radio towers in k positions out of m
to cover all cities uniquely.
Args:
n: The number of cities.
m: The number of potential tower locations.
d: The coverage radius of each tower.
A: A list of city locations.
B: A list of potential tower locations.
Returns:
A list of m integers, where the i-th integer represents the number of
ways to choose i towers to uniquely cover all cities.
"""
# dp[i][j] stores the number of ways to choose j towers from the first i
# potential locations, such that all cities up to the rightmost covered
# city by these j towers are uniquely covered.
dp = [[0 for _ in range(m + 1)] for _ in range(m + 1)]
# Base case: no towers placed.
for i in range(m + 1):
dp[i][0] = 1
# Iterate over potential tower locations.
for i in range(1, m + 1):
# Iterate over the number of towers to be placed.
for j in range(1, i + 1):
# Case 1: Don't place the current tower.
dp[i][j] = dp[i - 1][j]
# Case 2: Place the current tower.
# Find the rightmost city covered by the current tower.
rightmost_city = -1
for city_index in range(n):
if A[city_index] <= B[i - 1] + d:
rightmost_city = city_index
# Find the leftmost city that can be covered by the current tower
# without overlapping with previously placed towers.
leftmost_city = 0
for k in range(i - 1, 0, -1):
if B[k - 1] + d >= A[leftmost_city]:
leftmost_city = k
# Add the number of ways to place j - 1 towers from the leftmost
# city to the current tower location.
dp[i][j] = (dp[i][j] + dp[leftmost_city][j - 1]) % MOD
# The result array stores the number of ways to choose k towers.
result = [0] * m
for k in range(1, m + 1):
result[k - 1] = dp[m][k]
return result
def main():
"""
Reads input from a file, solves the tower placement problem, and prints
the results.
"""
import sys
if len(sys.argv) != 2:
print("Usage: python telecom_towers.py <inputfile>")
return
inputfile = sys.argv[1]
with open(inputfile, 'r') as file:
data = file.read().split()
index = 0
C = int(data[index])
index += 1
results = []
for _ in range(C):
n = int(data[index])
m = int(data[index + 1])
d = int(data[index + 2])
index += 3
A = list(map(int, data[index:index + n]))
index += n
B = list(map(int, data[index:index + m]))
index += m
result = solve_coverage(n, m, d, A, B)
results.append(" ".join(map(str, result)))
for result in results:
print(result)
if __name__ == "__main__":
main()
Explanation:
The solution uses dynamic programming to solve the problem efficiently.
- State Definition:
-
dp[i][j]
represents the number of ways to choosej
towers from the firsti
potential tower locations (B[0]
toB[i-1]
) such that all cities up to the rightmost city covered by thesej
towers are uniquely covered. -
Base Case:
-
dp[i][0] = 1
for alli
. This means there's one way to choose zero towers (i.e., not placing any tower). -
Recurrence Relation:
-
For each potential tower location
i
and number of towersj
:-
Case 1: Don't place the tower at location
i
. In this case, the number of ways to cover cities remains the same as if we considered only the firsti-1
tower locations:dp[i][j] = dp[i-1][j]
. -
Case 2: Place the tower at location
i
. -
Find the rightmost city
rightmost_city
covered by the tower atB[i-1]
. -
Find the leftmost city
leftmost_city
that can be covered by the tower atB[i-1]
without overlapping coverage from previously placed towers. We need to ensure that no city is covered by more than one tower. -
To avoid overlapping coverage, we only consider placing towers from
leftmost_city
toi-1
and add the number of ways to placej-1
towers in this range:dp[i][j] = (dp[i][j] + dp[leftmost_city][j - 1]) % MOD
.
-
-
Final Result:
-
The final result array
result
stores the number of ways to choosek
towers for eachk
from 1 tom
. We get this fromdp[m][k]
, which represents choosingk
towers from allm
locations.
Time and Space Complexity:
-
Time Complexity:
O(m² * n), where
m
is the number of potential tower locations andn
is the number of cities. This is because we have nested loops iterating overm
,j
, and sometimesn
(while findingrightmost_city
andleftmost_city
). - Space Complexity: O(m²), as we are using a 2D DP table of size (m+1) * (m+1).
Improvements:
-
The time complexity can be improved to O(m² + n) or O(m² log n + n) by using binary search or other efficient data structures to find
rightmost_city
andleftmost_city
more efficiently.