首页 > 编程问答 >发现这个有趣的问题Dynamic Planning Approach for Radio Tower Placement in Cities

发现这个有趣的问题Dynamic Planning Approach for Radio Tower Placement in Cities

时间:2024-07-31 12:55:50浏览次数:11  
标签:python dynamic-programming dsa

在 ByteLand 中,沿轴有 n(≤ 105) 个城市,第 i 个城市位于 (A₁,0)(对于 1≤ i ≤ n,A≤ 10°)。 在ByteLand,有一家制造无线电塔的电信公司。每个塔的覆盖半径为 d,即,当且仅当 x - y ≤ d 时,(y, 0) 处的塔可覆盖 (2,0) 处的城市。提示:1.目标解决方案基于动态规划,2.问题陈述本身包含有关如何定义 DP 函数的提示 该公司已确定 m(≤1200) 个可能放置无线电塔的位置。这些位置中的第 j 个位于 (B3, 0)(B;≤ 10°,对于 1≤ j ≤ m)。该公司只能在这些地点放置无线电塔。如果一个城市有多个塔提供服务,该公司也会面临困难。也就是说,假设有两个塔T1、T2使得某个城市A;位于两座塔的覆盖范围内。在这种情况下,A 中的设备将无法决定与 T1、T2 中的哪个塔进行通信。为了避免这个问题,他们想建造塔,这样这样的情况就永远不会发生 发生。 因此,该公司希望放置一些塔楼,以便 (i) 每个城市至少被一座塔楼覆盖,并且 (ii) 没有一个城市被超过一座塔楼覆盖。为了帮助他们找到这样的作业,请解决以下问题。 对于每个 1≤ k ≤ m 的整数 k,计算将无线电塔放置在 m 个给定位置中的 k 个位置的方法数,以便每个城市都被一个塔覆盖。由于答案可能很大,所以输出它对 109+7 取模,即,如果答案是 x,则打印 z 除以 109+7 时的余数。 暗示。您可能想要解决以下(看似更难)问题:对于每个整数 1≤ i ≤ m,且 1 ≤ j ≤ m,我们可以通过多少种方式选择塔位置,以便 (i) 最右边的塔位于 B[i ], (ii) B[1], B[2],... B[i] 中恰好选择了 j 个塔(包括 B[i]),并且 (iii) B[i] 左边的每个城市是唯一被塔覆盖的吗?看看你是否可以使用这些问题将原始问题简化为更小的子问题。示例解决方案的复杂度为 O(m² + n) 或 O(m² logn+n)。如果您的解决方案需要 (m³) 时间,那么您的期望分数将为 3.6/6.0。 输入输出 每个输入文件包含多个测试实例。第一行包含一个整数 C,表示测试实例的数量。 C 实例的描述如下。 每个测试实例由三行组成: • 第一行包含三个空格分隔的整数n、m、d。 • 第二行包含n 个空格分隔的整数A1, A2,... An。 • 第三行包含 m 个空格分隔的整数 B1, B2,... Bm • 保证城市和潜在塔位置按升序给出,即Ai > Ai-1 和B; > Bj-1 对于每个 1 <i<n 且 1<j≤m 成立。输出 m 个空格分隔的整数,其中第 i 个整数表示精确选择 i 个塔来唯一覆盖所有城市的方法数。 在此作业中,您将获得包含输入和输出代码的示例提交。您只需要完成一个函数,给定 d 以及城市和塔的位置,返回 m 个整数的数组。

5 5 2
1 2 3 4 5
1 2 3 4 5
0 2 0 0 0

说明:有两种方法可以覆盖城市。第一种方法是在 {1,4} 放置塔,第二种方法是在 {2,5} 放置塔。第一种方式中,A[1]、A[2] 处的城市仅被 B[1] 处的塔覆盖,而 A[3]、A[4]、A[5] 处的城市仅被 B[1] 处的塔覆盖。 B[5]。两种方式都需要 2 个塔。因此答案是{0,2,0,0,0}。

MOD = 10 ** 9 + 7

def compute_cost(A, B, i, d):
    left = B[i] - d + 1
    right = B[i] + d - 1
    count = 0

    for city in A:
        if left <= city <= right:
            count += 1  # This city is covered by this tower

    return count

def solve_coverage(n, m, d, A, B):
    dp = [[float('inf')] * (m + 1) for _ in range(m + 1)]
    count_towers = [[0] * (m + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        dp[0][i] = 0
        count_towers[0][i] = 1

    for t in range(1, m + 1):
        for i in range(1, m + 1):
            cost = compute_cost(A, B, i - 1, d)
            dp[t][i] = cost + dp[t - 1][i - 1]
            count_towers[t][i] = count_towers[t - 1][i - 1]

            for j in range(i - 1, 0, -1):
                cost = compute_cost(A, B, i - 1, d) - compute_cost(A, B, j - 1, d)
                new_cost = dp[t - 1][j - 1] + cost

                if new_cost < dp[t][i]:
                    dp[t][i] = new_cost
                    count_towers[t][i] = count_towers[t - 1][j - 1]
                elif new_cost == dp[t][i]:
                    count_towers[t][i] = (count_towers[t][i] + count_towers[t - 1][j - 1]) % MOD

    result = [0] * m
    for t in range(1, m + 1):
        result[t - 1] = dp[t][m] % MOD

    return result

def main():
    import sys
    if len(sys.argv) != 2:
        print("Usage: python telecom_towers.py <inputfile>")
        return

    inputfile = sys.argv[1]

    with open(inputfile, 'r') as file:
        data = file.read().split()

    index = 0
    C = int(data[index])
    index += 1
    results = []

    for _ in range(C):
        n = int(data[index])
        m = int(data[index + 1])
        d = int(data[index + 2])
        index += 3
        A = list(map(int, data[index:index + n]))
        index += n
        B = list(map(int, data[index:index + m]))
        index += m

        result = solve_coverage(n, m, d, A, B)
        results.append(" ".join(map(str, result)))

    for result in results:
        print(result)

if __name__ == "__main__":
    main()

MOD = 10**9 + 7

def solve_coverage(n, m, d, A, B):
    """
    Calculates the number of ways to place radio towers in k positions out of m
    to cover all cities uniquely.

    Args:
        n: The number of cities.
        m: The number of potential tower locations.
        d: The coverage radius of each tower.
        A: A list of city locations.
        B: A list of potential tower locations.

    Returns:
        A list of m integers, where the i-th integer represents the number of
        ways to choose i towers to uniquely cover all cities.
    """

    # dp[i][j] stores the number of ways to choose j towers from the first i
    # potential locations, such that all cities up to the rightmost covered
    # city by these j towers are uniquely covered.
    dp = [[0 for _ in range(m + 1)] for _ in range(m + 1)]

    # Base case: no towers placed.
    for i in range(m + 1):
        dp[i][0] = 1

    # Iterate over potential tower locations.
    for i in range(1, m + 1):
        # Iterate over the number of towers to be placed.
        for j in range(1, i + 1):
            # Case 1: Don't place the current tower.
            dp[i][j] = dp[i - 1][j]

            # Case 2: Place the current tower.
            # Find the rightmost city covered by the current tower.
            rightmost_city = -1
            for city_index in range(n):
                if A[city_index] <= B[i - 1] + d:
                    rightmost_city = city_index

            # Find the leftmost city that can be covered by the current tower
            # without overlapping with previously placed towers.
            leftmost_city = 0
            for k in range(i - 1, 0, -1):
                if B[k - 1] + d >= A[leftmost_city]:
                    leftmost_city = k

            # Add the number of ways to place j - 1 towers from the leftmost
            # city to the current tower location.
            dp[i][j] = (dp[i][j] + dp[leftmost_city][j - 1]) % MOD

    # The result array stores the number of ways to choose k towers.
    result = [0] * m
    for k in range(1, m + 1):
        result[k - 1] = dp[m][k]

    return result

def main():
    """
    Reads input from a file, solves the tower placement problem, and prints
    the results.
    """
    import sys
    if len(sys.argv) != 2:
        print("Usage: python telecom_towers.py <inputfile>")
        return

    inputfile = sys.argv[1]

    with open(inputfile, 'r') as file:
        data = file.read().split()

    index = 0
    C = int(data[index])
    index += 1
    results = []

    for _ in range(C):
        n = int(data[index])
        m = int(data[index + 1])
        d = int(data[index + 2])
        index += 3
        A = list(map(int, data[index:index + n]))
        index += n
        B = list(map(int, data[index:index + m]))
        index += m

        result = solve_coverage(n, m, d, A, B)
        results.append(" ".join(map(str, result)))

    for result in results:
        print(result)

if __name__ == "__main__":
    main()

Explanation:

The solution uses dynamic programming to solve the problem efficiently.

  1. State Definition:
  2. dp[i][j] represents the number of ways to choose j towers from the first i potential tower locations ( B[0] to B[i-1] ) such that all cities up to the rightmost city covered by these j towers are uniquely covered.

  3. Base Case:

  4. dp[i][0] = 1 for all i . This means there's one way to choose zero towers (i.e., not placing any tower).

  5. Recurrence Relation:

  6. For each potential tower location i and number of towers j :

    • Case 1: Don't place the tower at location i . In this case, the number of ways to cover cities remains the same as if we considered only the first i-1 tower locations: dp[i][j] = dp[i-1][j] .

    • Case 2: Place the tower at location i .

    • Find the rightmost city rightmost_city covered by the tower at B[i-1] .
    • Find the leftmost city leftmost_city that can be covered by the tower at B[i-1] without overlapping coverage from previously placed towers. We need to ensure that no city is covered by more than one tower.
    • To avoid overlapping coverage, we only consider placing towers from leftmost_city to i-1 and add the number of ways to place j-1 towers in this range: dp[i][j] = (dp[i][j] + dp[leftmost_city][j - 1]) % MOD .
  7. Final Result:

  8. The final result array result stores the number of ways to choose k towers for each k from 1 to m . We get this from dp[m][k] , which represents choosing k towers from all m locations.

Time and Space Complexity:

  • Time Complexity: O(m² * n), where m is the number of potential tower locations and n is the number of cities. This is because we have nested loops iterating over m , j , and sometimes n (while finding rightmost_city and leftmost_city ).
  • Space Complexity: O(m²), as we are using a 2D DP table of size (m+1) * (m+1).

Improvements:

  • The time complexity can be improved to O(m² + n) or O(m² log n + n) by using binary search or other efficient data structures to find rightmost_city and leftmost_city more efficiently.

标签:python,dynamic-programming,dsa
From: 78814456

相关文章

  • 基于python电商个性化推荐系统【源码+文档+PPT】
    精彩专栏推荐订阅:在下方专栏......
  • 探索 Python 的广泛应用:从开发到数据科学
    目录引言Python的发展历史Python的特点Python在Web开发中的应用Django框架Flask框架其他Web框架Python在数据科学中的应用数据分析机器学习深度学习Python在自动化和脚本编写中的应用系统管理和自动化网络爬虫Python在游戏开发中的应用PygamePython在......
  • 碰撞检测 | 矩形增量膨胀安全走廊模型(附C++/Python仿真)
    目录0专栏介绍1安全走廊建模的动机2矩形增量膨胀算法3算法仿真3.1C++实现3.2Python实现0专栏介绍......
  • python - 构建奇点容器时在 pyproject.toml 中找不到 [tool.poetry] 部分
    我正在尝试构建一个在HPC环境上运行的奇点容器。我正在使用poetry来管理python包。我的pyproject.toml文件的内容如下:[tool.poetry]name="haqc"version="0.1.0"description=""authors=["VivekKatial<[email protected]>"......
  • 如何在Python中处理FileNotFoundException
    我有一个函数可以从路径读取avro文件(按日文件夹)并将其写入相同的路径(聚合到按月的文件夹)。如果文件夹有.avro文件,该函数可以正常工作。但如果文件夹为空,我会收到错误。java.io.FileNotFoundException:Noavrofilesfound.Iffilesdon'thave.avroextension,set......
  • 有谁知道如何在 ROS 中使用 python 开发赛车模拟编码?
    在模拟中,主要目标是让自动驾驶汽车读取AprilTags并根据标牌提供的说明进行导航。AprilTags是一种基准标记,可作为重要的视觉提示,传达有关汽车周围环境的信息,例如方向、速度限制和其他关键路标。汽车的车载视觉系统应该检测这些标签,解码嵌入的数据,并相应地调整其运动。这包括在......
  • python实现提取视频帧的图片
    文章目录1、需求痛点2、完整代码⭐3、代码分析3.1、需要改动的地方3.2、OpenCV库的使用3.3、多线程技术4、执行效率5、效果展示⭐6、注意事项......
  • 三种语言实现差分(C++/Python/Java)
    题目输入一个长度为n的整数序列。接下来输入m个操作,每个操作包含三个整数l,r,c表示将序列中[l,r]之间的每个数加上c。请你输出进行完所有操作后的序列。输入格式第一行包含两个整数n和m。第二行包含n个整数,表示整数序列。接下来m行,每行包含三个整数l,r,c,表......
  • Python编程的16个坏习惯
    1、手动进行字符串格式化#坏习惯name="Alice"greeting = "Hello, " + name +"!" #好习惯name="Alice"greeting=f"Hello,{name}!" 理由:使用+进行字符串拼接会导致代码可读性差,而且在复杂情况下容易出错,f-string可读性更好 2、手动关闭文件#坏习惯......
  • Flask框架入门:快速搭建轻量级Python网页应用
    转载: Flask框架入门:快速搭建轻量级Python网页应用1. Flask基础Flask是一个使用Python编写的轻量级Web应用框架。它的设计目标是让Web开发变得快速简单,同时保持应用的灵活性。Flask依赖于两个外部库:Werkzeug和Jinja2,Werkzeug作为WSGI工具包处理Web服务的底层细节,Jinja2作为......