这是我正在运行的代码:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import precision_score, recall_score,auc
from sklearn.metrics import roc_curve,roc_auc_score, plot_roc_curve
这是错误:
ImportError Traceback (most recent call last)
<ipython-input-3-d1b430d75826> in <cell line: 7>()
5 from sklearn.tree import DecisionTreeClassifier
6 from sklearn.naive_bayes import GaussianNB, MultinomialNB
----> 7 from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_curve, roc_auc_score, plot_roc_curve
8 from sklearn.neighbors import KNeighborsClassifier
9 from sklearn.neural_network import MLPClassifier
ImportError: cannot import name 'plot_roc_curve' from 'sklearn.metrics' (/usr/local/lib/python3.10/dist-packages/sklearn/metrics/__init__.py)
请告诉我我的代码是否错误或缺少任何内容?
代码中的错误在于尝试从
sklearn.metrics
导入
plot_roc_curve
,而它在该模块中不可用。
plot_roc_curve
已在 scikit-learn 0.25 版中弃用。
可以按照以下步骤解决该错误:
-
导入
RocCurveDisplay
:用RocCurveDisplay
替换plot_roc_curve
。此类允许绘制 ROC 曲线。 -
拟合的模型 :确保已经使用训练数据拟合了分类器模型。
-
使用
RocCurveDisplay.from_predictions()
:可以直接从模型预测中创建和绘制 ROC 曲线。
以下是代码的更正版本:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_curve, roc_auc_score, RocCurveDisplay
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
# ...(加载和准备数据的代码)...
# 假设有一个名为“model”的分类器,它已经过训练
model = DecisionTreeClassifier() # 例如
model.fit(X_train, y_train)
# 做出预测
y_scores = model.predict_proba(X_test)[:, 1]
# 创建 ROC 曲线
RocCurveDisplay.from_predictions(y_test, y_scores)
plt.show()
此代码将导入
RocCurveDisplay
,然后使用它根据的模型预测绘制 ROC 曲线。确保根据的数据和模型名称替换
model
、
X_train
、
y_train
、
X_test
和
y_test
。