首页 > 编程问答 >如何调试 python Flask [84] [CRITICAL] WORKER TIMEOUT?

如何调试 python Flask [84] [CRITICAL] WORKER TIMEOUT?

时间:2024-07-23 10:36:44浏览次数:15  
标签:python flask

调试:gtts.tts:保存到 temp.mp3

7 月 22 日 09:10:56 PM[2024-07-22 15:40:56 +0000] [84] [严重] 工作超时 (pid:87)| ||7 月 22 日 09:10:56 PM[2024-07-22 15:40:56 +0000] [87] [INFO] 工人退出 (pid: 87)

7 月 22 日 09:10:57 PM[2024 -07-22 15:40:57 +0000] [95] [INFO] 引导工作进程 pid: 95

Jul 22 09:10:57 PM[2024-07-22 15:40:57 +0000] [95] [INFO] Booting worker with pid: 95


The error message "WORKER TIMEOUT" in your Flask application, alongside the log details, suggests that a worker process is taking longer than the allowed time to complete a task, leading to a timeout. This is often related to long-running processes within a request context. Let's break down how to debug and address this issue.

Understanding the Logs:

  • "[84] [CRITICAL] WORKER TIMEOUT (pid:87)" : This is the core issue. A worker process (pid 87) exceeded the timeout limit set by your web server (likely Gunicorn or uWSGI).
  • "[87] [INFO] WORKER EXIT (pid: 87)" : The worker process (87) was terminated due to the timeout.
  • "[95] [INFO] Booting worker with pid: 95" : The server immediately spawns a new worker (95) to handle incoming requests, ensuring your application remains available.

Debugging Steps:

  1. Identify the Long-Running Code: The log message "调试:gtts.tts:保存到 temp.mp3" is a strong indicator. The issue likely stems from the gtts.tts (Google Text-to-Speech) library operation. Text-to-speech conversion, especially for longer texts, can be time-consuming.

  2. Optimize gtts.tts Usage:

    • Cache Results: If possible, cache the generated MP3 files to avoid repeated conversions for the same text.
    • Shorter Text Segments: Break down large texts into smaller chunks and process them individually.
    • Faster Languages/Voices: Some languages or voices might process faster than others. Experiment to see if alternatives exist.
  3. Background Tasks (Celery, RQ, etc.):

    • Offload to a Task Queue: For time-consuming operations like text-to-speech, move them out of the request/response cycle. Use a task queue like Celery or RQ to process these tasks asynchronously in the background. This allows your Flask app to respond immediately to requests while the task is being handled separately.
  4. Increase Timeout Settings (Caution):

  5. Web Server Configuration: If you're using Gunicorn or uWSGI, increase the worker timeout value. Be very cautious with this, as it might mask underlying issues and make your application less responsive under load. Only use this as a temporary measure while you implement more robust solutions like background tasks.

  6. Profiling:

    • If the source of the delay isn't immediately clear, use a Python profiler (e.g., cProfile , line_profiler ) to pinpoint performance bottlenecks in your code.

Example with Background Tasks (Celery):

from flask import Flask
from celery import Celery

app = Flask(__name__)
# Configure Celery (adjust broker URL as needed)
app.config['CELERY_BROKER_URL'] = 'redis://localhost:6379/0' 
app.config['CELERY_RESULT_BACKEND'] = 'redis://localhost:6379/0'
celery = Celery(app.name, broker=app.config['CELERY_BROKER_URL'])
celery.conf.update(app.config)

@celery.task()
def generate_speech(text):
    """Generates speech using gtts.tts and saves it."""
    from gtts import tts 
    tts = gTTS(text=text, lang='en')
    tts.save("temp.mp3")

@app.route('/process_text', methods=['POST'])
def process_text():
    text = request.form.get('text')
    generate_speech.delay(text) # Start the task asynchronously 
    return jsonify({'status': 'processing'}), 202 # Return immediately

Important Considerations:

  • Error Handling: Implement robust error handling for your background tasks (e.g., retries, logging) to ensure graceful degradation if issues arise.
  • User Experience: Provide feedback to users about long-running processes (e.g., progress bars, notifications) so they aren't left waiting without knowing what's happening.

By carefully analyzing your logs, optimizing code, and leveraging background tasks, you can effectively resolve "WORKER TIMEOUT" errors and create a more responsive and robust Flask application.

标签:python,flask
From: 78779730

相关文章

  • 类型错误:无法将函数返回值转换为 Python 类型!签名是 () -> 处理 anaconda spider
    这是代码:importosimportrandomimportnumpyasnpimportpandasaspdimporttensorflowastffromtensorflow.kerasimportbackendasKfromtensorflow.keras.layersimportDense,Dropout,Flatten,Conv2D,MaxPool2D,Input......
  • python进阶---闭包与装饰器
    一、闭包        在Python中,闭包是指一个函数内部定义的函数,这个内部函数可以访问并修改其外部函数的局部变量,即使外部函数已经执行完毕。闭包可以通过多层函数嵌套来实现。    闭包的三要素:    1、外部函数嵌套内部函数    2、外部函数返......
  • 强制从当前包自动导入的 Python 以此包的名称为前缀
    我在VSCode中使用Python和Pylance扩展。在我正在编辑的自己的包中,自动添加的导入(设置“导入格式:绝对”)如下所示:frommydirectory.myfileimportmyclass但是,我的Python包正在被被一个(非常愚蠢且不可协商的)外部系统消耗,该系统拒绝正确解释它,除非导入的格式特别......
  • Python语言-面向对象
    知识代码classJobSalary(object):job=''def__init__(self,city):self.jobname="数据分析师"self.exp=''self.city=city#方法defdata_normalize(self,data):print(f'正在规范化......
  • 需要帮助使用 Selenium Python 单击 Microsoft Teams 按钮
    我将Python与Selenium结合使用,并自动登录MicrosoftTeams。进入后,弹出窗口显示我需要单击“立即切换”以切换到V2版本。我似乎无法使用SeleniumPython成功单击此按钮。谁能帮我自动点击这个按钮?这是我不成功的尝试:self.driver.find_element(By.CLASS_NAME,......
  • python接口自动化(四十)- logger 日志 - 下(超详解)
    宏哥微信粉丝群:https://bbs.csdn.net/topics/618423372 有兴趣的可以扫码加入 1.简介按照上一篇的计划,这一篇给小伙伴们讲解一下:(1)多模块使用logging,(2)通过文件配置logging模块,(3)自己封装一个日志(logging)类。可能有的小伙伴在这里会有个疑问一个logging为什么分两篇的篇幅......
  • Python面试题:使用NumPy进行高效数组运算
    NumPy是Python中进行高效数组运算的基础库。以下是一些示例,展示了如何使用NumPy进行高效的数组运算,包括创建数组、数组操作、数学运算以及一些高级操作。安装NumPy如果你还没有安装NumPy,可以通过以下命令进行安装:pipinstallnumpy示例代码1.创建数组import......
  • Python面试题:使用Matplotlib和Seaborn进行数据可视化
    使用Matplotlib和Seaborn进行数据可视化是数据分析中非常重要的一部分。以下示例展示了如何使用这两个库来创建各种图表,包括基本的线图、柱状图、散点图和高级的分类数据可视化图表。安装Matplotlib和Seaborn如果你还没有安装这两个库,可以使用以下命令进行安装:pipins......
  • 20、Python之容器:红楼主角都有谁?10行代码生成《红楼梦》词云图
    引言Python系列前面的文章中,我们介绍了Python中容器的基本使用,上一篇中,我们又重点介绍了Counter计数器的使用。这些介绍,应该足以应付日常的工作需求了。在今天的文章中,我想以词云图的生成这个综合案例,巩固一下前面关于容器、字典推导式、Counter的使用。同时,介绍两个比较好......
  • 使用snowflake.connector 3.0.3上的密钥对从python连接到snowflake
    我正在尝试使用Snowflake.connector包从我的Python代码连接到Snowflake。不幸的是,由于遗留代码,我只能在python3.7.3上使用Snowflake连接器版本3.0.3,并且无法升级我确实设法从我自己的计算机进行连接,使用:con=Snowflake.connector。连接(...私有密钥文件=......