首页 > 编程问答 >类型错误:无法将函数返回值转换为 Python 类型!签名是 () -> 处理 anaconda spider

类型错误:无法将函数返回值转换为 Python 类型!签名是 () -> 处理 anaconda spider

时间:2024-07-23 10:26:41浏览次数:19  
标签:python python-3.x tensorflow machine-learning keras

这是代码:

    import os
    import random
 
    import numpy as np
    import pandas as pd
    import tensorflow as tf
    from tensorflow.keras import backend as K
    from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, Input
    from tensorflow.keras.models import Sequential, load_model 
    from tensorflow.keras.callbacks import ModelCheckpoint
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import accuracy_score, f1_score, mean_absolute_error
 
    DATADIR = "./Dataset"
    TRAIN_TEST_CUTOFF = '2016-04-21'
    TRAIN_VALID_RATIO = 0.75
 
    # https://datascience.stackexchange.com/questions/45165/how-to-get-accuracy-f1-precision-and- 
    recall-for-a-keras-model
    # to implement F1 score for validation in a batch
    def recall_m(y_true, y_pred):
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
         possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
         recall = true_positives / (possible_positives + K.epsilon())
        return recall
 
    def precision_m(y_true, y_pred):
        true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
        predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
        precision = true_positives / (predicted_positives + K.epsilon())
        return precision
 
    def f1_m(y_true, y_pred):
        precision = precision_m(y_true, y_pred)
        recall = recall_m(y_true, y_pred)
        return 2*((precision*recall)/(precision+recall+K.epsilon()))
 
    def f1macro(y_true, y_pred):
        f_pos = f1_m(y_true, y_pred)
        # negative version of the data and prediction
        f_neg = f1_m(1-y_true, 1-K.clip(y_pred,0,1))
        return (f_pos + f_neg)/2
 
    def cnnpred_2d(seq_len=60, n_features=82, n_filters=(8,8,8), droprate=0.1):
        "2D-CNNpred model according to the paper"
        model = Sequential([
            Input(shape=(seq_len, n_features, 1)),
            Conv2D(n_filters[0], kernel_size=(1, n_features), activation="relu"),
            Conv2D(n_filters[1], kernel_size=(3,1), activation="relu"),
            MaxPool2D(pool_size=(2,1)),
            Conv2D(n_filters[2], kernel_size=(3,1), activation="relu"),
            MaxPool2D(pool_size=(2,1)),
            Flatten(),
            Dropout(droprate),
            Dense(1, activation="sigmoid")
        ])
        return model
 
     def datagen(data, seq_len, batch_size, targetcol, kind):
        "As a generator to produce samples for Keras model"
        batch = []
        while True:
             # Pick one dataframe from the pool
            key = random.choice(list(data.keys()))
            df = data[key]
            input_cols = [c for c in df.columns if c != targetcol]
            index = df.index[df.index < TRAIN_TEST_CUTOFF]
            split = int(len(index) * TRAIN_VALID_RATIO)
            assert split > seq_len, "Training data too small for sequence length 
    {}".format(seq_len)
            if kind == 'train':
                index = index[:split]   # range for the training set
            elif kind == 'valid':
                index = index[split:]   # range for the validation set
            else:
                raise NotImplementedError
            # Pick one position, then clip a sequence length
            while True:
                t = random.choice(index)     # pick one time step
                n = (df.index == t).argmax() # find its position in the dataframe
                if n-seq_len+1 < 0:
                    continue # this sample is not enough for one sequence length
                frame = df.iloc[n-seq_len+1:n+1]
                batch.append([frame[input_cols].values, df.loc[t, targetcol]])
                break
            # if we get enough for a batch, dispatch
            if len(batch) == batch_size:
                X, y = zip(*batch)
                X, y = np.expand_dims(np.array(X), 3), np.array(y)
                yield X, y
                batch = []
 
     def testgen(data, seq_len, targetcol):
        "Return array of all test samples"
        batch = []
        for key, df in data.items():
            input_cols = [c for c in df.columns if c != targetcol]
            # find the start of test sample
            t = df.index[df.index >= TRAIN_TEST_CUTOFF][0]
            n = (df.index == t).argmax()
            # extract sample using a sliding window
            for i in range(n+1, len(df)+1):
                frame = df.iloc[i-seq_len:i]
                batch.append([frame[input_cols].values, frame[targetcol][-1]])
        X, y = zip(*batch)
        return np.expand_dims(np.array(X),3), np.array(y)
 
    # Read data into pandas DataFrames
    data = {}
    for filename in os.listdir(DATADIR):
        if not filename.lower().endswith(".csv"):
            continue # read only the CSV files
        filepath = os.path.join(DATADIR, filename)
        X = pd.read_csv(filepath, index_col="Date", parse_dates=True)
        # basic preprocessing: get the name, the classification
        # Save the target variable as a column in dataframe for easier dropna()
        name = X["Name"][0]
        del X["Name"]
        cols = X.columns
        X["Target"] = (X["Close"].pct_change().shift(-1) > 0).astype(int)
        X.dropna(inplace=True)
        # Fit the standard scaler using the training dataset
        index = X.index[X.index < TRAIN_TEST_CUTOFF]
        index = index[:int(len(index) * TRAIN_VALID_RATIO)]
        scaler = StandardScaler().fit(X.loc[index, cols])
        # Save scale transformed dataframe
        X[cols] = scaler.transform(X[cols])
        data[name] = X
 
    seq_len = 60
    batch_size = 128
    n_epochs = 20
    n_features = 82
  
    #  Produce CNNpred as a binary classification problem
    model = cnnpred_2d(seq_len, n_features)
    model.compile(optimizer="adam", loss="mae", metrics=["acc", f1macro])
    model.summary()  # print model structure to console
 
    # Set up callbacks and fit the model
    # We use custom validation score f1macro() and hence monitor for "val_f1macro"
    checkpoint_path = "./cp2d-{epoch}-{val_f1macro:.2f}.h5"
    callbacks = [
       ModelCheckpoint(checkpoint_path,
                       monitor='val_f1macro', mode="max",
                        verbose=0, save_best_only=True, save_weights_only=False, 
    save_freq="epoch")
    ]
    model.fit(datagen(data, seq_len, batch_size, "Target", "train"),
              validation_data=datagen(data, seq_len, batch_size, "Target", "valid"),
              epochs=n_epochs, steps_per_epoch=400, validation_steps=10, verbose=1, 
    callbacks=callbacks)
 
    # Prepare test data
    test_data, test_target = testgen(data, seq_len, "Target")
 
    # Test the model
    test_out = model.predict(test_data)
    test_pred = (test_out > 0.5).astype(int)
    print("accuracy:", accuracy_score(test_pred, test_target))
    print("MAE:", mean_absolute_error(test_pred, test_target))
    print("F1:", f1_score(test_pred, test_target))

这是错误:

       File ~\OneDrive\Desktop\SAMIR\Nile University Undergraduate\Final Year Project\CNNpred- 
   Keras-main\2DCNNPredOG.py:6 in <module>
        import tensorflow as tf

      File ~\anaconda3\lib\site-packages\tensorflow\__init__.py:37 in <module>
        from tensorflow.python.tools import module_util as _module_util
 
      File ~\anaconda3\lib\site-packages\tensorflow\python\__init__.py:42 in <module>
        from tensorflow.python import data

      File ~\anaconda3\lib\site-packages\tensorflow\python\data\__init__.py:21 in <module>
        from tensorflow.python.data import experimental

      File ~\anaconda3\lib\site-packages\tensorflow\python\data\experimental\__init__.py:95 in 
    <module>
         from tensorflow.python.data.experimental import service

      File ~\anaconda3\lib\site- 
    packages\tensorflow\python\data\experimental\service\__init__.py:387 in <module>
         from tensorflow.python.data.experimental.ops.data_service_ops import distribute

      File ~\anaconda3\lib\site- 
   packages\tensorflow\python\data\experimental\ops\data_service_ops.py:23 in <module>
         from tensorflow.python.data.experimental.ops import compression_ops

      File ~\anaconda3\lib\site- 
   packages\tensorflow\python\data\experimental\ops\compression_ops.py:16 in <module>
         from tensorflow.python.data.util import structure

      File ~\anaconda3\lib\site-packages\tensorflow\python\data\util\structure.py:22 in <module>
        from tensorflow.python.data.util import nest

      File ~\anaconda3\lib\site-packages\tensorflow\python\data\util\nest.py:36 in <module>
        from tensorflow.python.framework import sparse_tensor as _sparse_tensor

      File ~\anaconda3\lib\site-packages\tensorflow\python\framework\sparse_tensor.py:24 in 
    <module>
        from tensorflow.python.framework import constant_op

      File ~\anaconda3\lib\site-packages\tensorflow\python\framework\constant_op.py:25 in <module>
        from tensorflow.python.eager import execute

      File ~\anaconda3\lib\site-packages\tensorflow\python\eager\execute.py:23 in <module>
        from tensorflow.python.framework import dtypes

      File ~\anaconda3\lib\site-packages\tensorflow\python\framework\dtypes.py:29 in <module>
        _np_bfloat16 = _pywrap_bfloat16.TF_bfloat16_type()

     TypeError: Unable to convert function return value to a Python type! The signature was
         () -> handle

如何解决这个问题?


你遇到的错误信息 "TypeError: Unable to convert function return value to a Python type! The signature was () -> handle" 通常表示 TensorFlow 在尝试将 C++ 函数的返回值(一个句柄)转换为 Python 类型时遇到了问题。这通常与 TensorFlow 版本不兼容或安装问题有关。

以下是一些解决此问题的步骤:

1. 更新 TensorFlow 和相关库:

  • 确保你的 TensorFlow 版本是最新的。你可以使用以下命令更新: bash pip install --upgrade tensorflow
  • 同时更新其他相关库,例如 numpy、pandas 等: bash pip install --upgrade numpy pandas

2. 检查 Anaconda 环境:

  • 确保你在使用正确的 Anaconda 环境,并且该环境已激活。
  • 尝试创建一个新的 Anaconda 环境并重新安装 TensorFlow 和其他依赖项。

3. 检查 GPU 支持:

  • 如果你正在使用 GPU 版本的 TensorFlow,请确保已正确安装和配置 GPU 驱动程序和 CUDA。

4. 禁用 eager execution:

  • 在 TensorFlow 2.x 中,默认情况下启用了 eager execution。尝试在代码开头禁用它: python import tensorflow as tf tf.compat.v1.disable_eager_execution()

5. 检查代码中的其他错误:

  • 虽然错误信息指向 TensorFlow,但也可能是代码中的其他问题导致了此错误。仔细检查你的代码,特别是与数据类型和函数返回值相关的部分。

如果以上步骤都无法解决问题,请提供以下信息以便我更好地帮助你:

  • 你的 TensorFlow 版本
  • 你的操作系统
  • 你是否正在使用 GPU
  • 完整的错误消息和代码片段

此外,在 datagen 函数中,你的代码在 index = index[:split] index = index[split:] 部分可能存在潜在的错误。由于你在循环中修改 index ,所以可能会导致索引超出范围的错误。建议使用切片创建 index 的副本,例如 index = index[:split].copy() index = index[split:].copy()

希望这些信息能帮到你!如果问题仍然存在,请提供更多细节,我会尽力提供进一步的帮助。

标签:python,python-3.x,tensorflow,machine-learning,keras
From: 72179285

相关文章

  • python进阶---闭包与装饰器
    一、闭包        在Python中,闭包是指一个函数内部定义的函数,这个内部函数可以访问并修改其外部函数的局部变量,即使外部函数已经执行完毕。闭包可以通过多层函数嵌套来实现。    闭包的三要素:    1、外部函数嵌套内部函数    2、外部函数返......
  • 强制从当前包自动导入的 Python 以此包的名称为前缀
    我在VSCode中使用Python和Pylance扩展。在我正在编辑的自己的包中,自动添加的导入(设置“导入格式:绝对”)如下所示:frommydirectory.myfileimportmyclass但是,我的Python包正在被被一个(非常愚蠢且不可协商的)外部系统消耗,该系统拒绝正确解释它,除非导入的格式特别......
  • Python语言-面向对象
    知识代码classJobSalary(object):job=''def__init__(self,city):self.jobname="数据分析师"self.exp=''self.city=city#方法defdata_normalize(self,data):print(f'正在规范化......
  • 需要帮助使用 Selenium Python 单击 Microsoft Teams 按钮
    我将Python与Selenium结合使用,并自动登录MicrosoftTeams。进入后,弹出窗口显示我需要单击“立即切换”以切换到V2版本。我似乎无法使用SeleniumPython成功单击此按钮。谁能帮我自动点击这个按钮?这是我不成功的尝试:self.driver.find_element(By.CLASS_NAME,......
  • python接口自动化(四十)- logger 日志 - 下(超详解)
    宏哥微信粉丝群:https://bbs.csdn.net/topics/618423372 有兴趣的可以扫码加入 1.简介按照上一篇的计划,这一篇给小伙伴们讲解一下:(1)多模块使用logging,(2)通过文件配置logging模块,(3)自己封装一个日志(logging)类。可能有的小伙伴在这里会有个疑问一个logging为什么分两篇的篇幅......
  • Python面试题:使用NumPy进行高效数组运算
    NumPy是Python中进行高效数组运算的基础库。以下是一些示例,展示了如何使用NumPy进行高效的数组运算,包括创建数组、数组操作、数学运算以及一些高级操作。安装NumPy如果你还没有安装NumPy,可以通过以下命令进行安装:pipinstallnumpy示例代码1.创建数组import......
  • Python面试题:使用Matplotlib和Seaborn进行数据可视化
    使用Matplotlib和Seaborn进行数据可视化是数据分析中非常重要的一部分。以下示例展示了如何使用这两个库来创建各种图表,包括基本的线图、柱状图、散点图和高级的分类数据可视化图表。安装Matplotlib和Seaborn如果你还没有安装这两个库,可以使用以下命令进行安装:pipins......
  • 20、Python之容器:红楼主角都有谁?10行代码生成《红楼梦》词云图
    引言Python系列前面的文章中,我们介绍了Python中容器的基本使用,上一篇中,我们又重点介绍了Counter计数器的使用。这些介绍,应该足以应付日常的工作需求了。在今天的文章中,我想以词云图的生成这个综合案例,巩固一下前面关于容器、字典推导式、Counter的使用。同时,介绍两个比较好......