我想做 量化感知训练 ,
这是我的模型架构。
Model: "sequential_4"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
masking_4 (Masking) (None, 389, 64) 0
_________________________________________________________________
my_layer_5_4 (my_layer_5) (None, 389, 512) 12288
_________________________________________________________________
time_distributed_4 (TimeDist (None, 389, 39) 20007
=================================================================
我遵循 tfmot.quantization.keras.QuantizeConfig , 我希望他们都使用量化。 这是我的代码
import tensorflow_model_optimization as tfmot
from tensorflow_model_optimization.python.core.quantization.keras.default_8bit import default_8bit_quantize_configs
NoOpQuantizeConfig = default_8bit_quantize_configs.NoOpQuantizeConfig
class NoOpQuantizeConfig(tfmot.quantization.keras.QuantizeConfig):
"""QuantizeConfig which does not quantize any part of the layer."""
def get_weights_and_quantizers(self, layer):
return []
def get_activations_and_quantizers(self, layer):
return []
def set_quantize_weights(self, layer, quantize_weights):
pass
def set_quantize_activations(self, layer, quantize_activations):
pass
def get_output_quantizers(self, layer):
return []
def get_config(self):
return {}
def apply_quantization(layer):
if isinstance(layer, (tf.keras.layers.TimeDistributed, tf.keras.layers.Masking,tf.keras.layers.my_layer_5_4 )):
return tfmot.quantization.keras.quantize_annotate_layer(layer, quantize_config=NoOpQuantizeConfig())
else:
return tfmot.quantization.keras.quantize_annotate_layer(layer)
if __name__ == '__main__':
model = load_model('./model.h5',custom_objects = {'my_layer_5': my_layer_5})
model.summary()
annotated_model = tf.keras.models.clone_model(
model,
clone_function=apply_quantization,
)
with tf.keras.utils.custom_object_scope({"NoOpQuantizeConfig": NoOpQuantizeConfig}):
q_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
q_aware_model.summary()
当我运行它时,但显示错误
ValueError: ('Expected `model` argument to be a `Model` instance, got ', <keras.engine.sequential.Sequential object at 0x7f234263dfd0>)```
出现
ValueError: ('Expected 'model' argument to be a 'Model' instance, got ', <keras.engine.sequential.Sequential object at 0x7f234263dfd0>)
错误,是因为你试图将
tfmot.quantization.keras.quantize_apply
应用于一个
Sequential
模型,而这个函数需要的是一个函数式 API 模型。
以下是解决此问题的步骤:
- 将 Sequential 模型转换为函数式 API 模型 :
你可以通过创建一个新的
Input
层并将你的
Sequential
模型的输入和输出连接到该层来做到这一点。例如:
```python input_tensor = tf.keras.Input(shape=(389, 64)) # 根据你的模型输入形状进行调整 output_tensor = model(input_tensor) # 将 Sequential 模型应用于输入张量
functional_model = tf.keras.Model(inputs=input_tensor, outputs=output_tensor) ```
- 使用函数式 API 模型进行量化感知训练 :
现在,你可以使用
functional_model
代替原始的
Sequential
模型来进行量化感知训练。
```python annotated_model = tf.keras.models.clone_model( functional_model, clone_function=apply_quantization, )
with tf.keras.utils.custom_object_scope({"NoOpQuantizeConfig": NoOpQuantizeConfig}): q_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model) ```
完整的代码:
import tensorflow_model_optimization as tfmot
from tensorflow_model_optimization.python.core.quantization.keras.default_8bit import default_8bit_quantize_configs
NoOpQuantizeConfig = default_8bit_quantize_configs.NoOpQuantizeConfig
# ... (你的 NoOpQuantizeConfig 和 apply_quantization 函数) ...
if __name__ == '__main__':
model = load_model('./model.h5',custom_objects = {'my_layer_5': my_layer_5})
model.summary()
# 将 Sequential 模型转换为函数式 API 模型
input_tensor = tf.keras.Input(shape=(389, 64))
output_tensor = model(input_tensor)
functional_model = tf.keras.Model(inputs=input_tensor, outputs=output_tensor)
annotated_model = tf.keras.models.clone_model(
functional_model,
clone_function=apply_quantization,
)
with tf.keras.utils.custom_object_scope({"NoOpQuantizeConfig": NoOpQuantizeConfig}):
q_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
q_aware_model.summary()
通过进行这些更改,你就可以解决
ValueError
并成功地对你的模型进行量化感知训练。