以下是完整的错误:
`---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[33], line 2
1 gnb = GaussianNB()
----> 2 cv = cross_val_score(gnb,X_train,y_train,cv=5, error_score = 'raise')
3 print(cv)
4 print(cv.mean())
File /opt/conda/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:515, in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, error_score)
512 # To ensure multimetric format is not supported
513 scorer = check_scoring(estimator, scoring=scoring)
--> 515 cv_results = cross_validate(
516 estimator=estimator,
517 X=X,
518 y=y,
519 groups=groups,
520 scoring={"score": scorer},
521 cv=cv,
522 n_jobs=n_jobs,
523 verbose=verbose,
524 fit_params=fit_params,
525 pre_dispatch=pre_dispatch,
526 error_score=error_score,
527 )
528 return cv_results["test_score"]
File /opt/conda/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:266, in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score)
263 # We clone the estimator to make sure that all the folds are
264 # independent, and that it is pickle-able.
265 parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
--> 266 results = parallel(
267 delayed(_fit_and_score)(
268 clone(estimator),
269 X,
270 y,
271 scorers,
272 train,
273 test,
274 verbose,
275 None,
276 fit_params,
277 return_train_score=return_train_score,
278 return_times=True,
279 return_estimator=return_estimator,
280 error_score=error_score,
281 )
282 for train, test in cv.split(X, y, groups)
283 )
285 _warn_or_raise_about_fit_failures(results, error_score)
287 # For callabe scoring, the return type is only know after calling. If the
288 # return type is a dictionary, the error scores can now be inserted with
289 # the correct key.
File /opt/conda/lib/python3.10/site-packages/sklearn/utils/parallel.py:63, in Parallel.__call__(self, iterable)
58 config = get_config()
59 iterable_with_config = (
60 (_with_config(delayed_func, config), args, kwargs)
61 for delayed_func, args, kwargs in iterable
62 )
---> 63 return super().__call__(iterable_with_config)
File /opt/conda/lib/python3.10/site-packages/joblib/parallel.py:1918, in Parallel.__call__(self, iterable)
1916 output = self._get_sequential_output(iterable)
1917 next(output)
-> 1918 return output if self.return_generator else list(output)
1920 # Let's create an ID that uniquely identifies the current call. If the
1921 # call is interrupted early and that the same instance is immediately
1922 # re-used, this id will be used to prevent workers that were
1923 # concurrently finalizing a task from the previous call to run the
1924 # callback.
1925 with self._lock:
File /opt/conda/lib/python3.10/site-packages/joblib/parallel.py:1847, in Parallel._get_sequential_output(self, iterable)
1845 self.n_dispatched_batches += 1
1846 self.n_dispatched_tasks += 1
-> 1847 res = func(*args, **kwargs)
1848 self.n_completed_tasks += 1
1849 self.print_progress()
File /opt/conda/lib/python3.10/site-packages/sklearn/utils/parallel.py:123, in _FuncWrapper.__call__(self, *args, **kwargs)
121 config = {}
122 with config_context(**config):
--> 123 return self.function(*args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:686, in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, split_progress, candidate_progress, error_score)
684 estimator.fit(X_train, **fit_params)
685 else:
--> 686 estimator.fit(X_train, y_train, **fit_params)
688 except Exception:
689 # Note fit time as time until error
690 fit_time = time.time() - start_time
File /opt/conda/lib/python3.10/site-packages/sklearn/naive_bayes.py:267, in GaussianNB.fit(self, X, y, sample_weight)
265 self._validate_params()
266 y = self._validate_data(y=y)
--> 267 return self._partial_fit(
268 X, y, np.unique(y), _refit=True, sample_weight=sample_weight
269 )
File /opt/conda/lib/python3.10/site-packages/sklearn/naive_bayes.py:427, in GaussianNB._partial_fit(self, X, y, classes, _refit, sample_weight)
424 if _refit:
425 self.classes_ = None
--> 427 first_call = _check_partial_fit_first_call(self, classes)
428 X, y = self._validate_data(X, y, reset=first_call)
429 if sample_weight is not None:
File /opt/conda/lib/python3.10/site-packages/sklearn/utils/multiclass.py:420, in _check_partial_fit_first_call(clf, classes)
413 raise ValueError(
414 "`classes=%r` is not the same as on last call "
415 "to partial_fit, was: %r" % (classes, clf.classes_)
416 )
418 else:
419 # This is the first call to partial_fit
--> 420 clf.classes_ = unique_labels(classes)
421 return True
423 # classes is None and clf.classes_ has already previously been set:
424 # nothing to do
File /opt/conda/lib/python3.10/site-packages/sklearn/utils/multiclass.py:107, in unique_labels(*ys)
105 _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None)
106 if not _unique_labels:
--> 107 raise ValueError("Unknown label type: %s" % repr(ys))
109 if is_array_api:
110 # array_api does not allow for mixed dtypes
111 unique_ys = xp.concat([_unique_labels(y) for y in ys])
ValueError: Unknown label type: (array([0.0, 1.0], dtype=object),)`
我正在尝试在 Kaggle 上的泰坦尼克号太空船项目中实现交叉验证,您可以在此处找到我的完整笔记本 我无法运行交叉验证功能。我已经摆弄了几个小时,但一直找不到解决方案。 我按照
Ken Jee 的泰坦尼克号项目示例 完成了我自己的 泰坦尼克号预测提交 在此代码中,交叉验证函数可以成功运行,我尝试将其重新用于泰坦尼克号太空船项目。 如果您需要任何其他详细信息,请告诉我。我对机器学习很陌生,所以我提前感谢您的耐心。
我已经尝试摆脱空值,验证我的训练和测试列表的数据类型是否相同,并且我已经尝试将分类变量映射到数值变量。
I've tried getting rid of null values, verified that the data types for my training and test lists are the same, and I've tried mapping categorical variables to numerical variables.
遇到的错误“ValueError:未知标签类型:(array([0.0, 1.0], dtype=object),)”表明的目标变量(
y_train
)数据类型存在问题。尽管该数组包含数字,但其数据类型为
object
,这表示它可能包含混合类型或被视为字符串。Scikit-learn 期望目标变量为数值类型(通常为整数)用于分类。
以下是解决此问题的几个步骤:
-
检查数据类型: 在调用
cross_val_score
函数之前,请打印y_train
的数据类型以确认其是否为object
。python print(y_train.dtype)
-
转换数据类型: 如果数据类型为
object
,则需要将其转换为数值类型,例如int
或float
。可以使用astype
方法执行此操作:python y_train = y_train.astype(int)
如果的目标变量包含字符串标签(例如“是”、“否”),则需要先使用LabelEncoder
将它们转换为数值:python from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y_train = le.fit_transform(y_train)
-
在数据源处查找问题: 错误的数据类型可能表示数据加载或预处理过程中存在问题。仔细检查从CSV文件或其他数据源加载数据的方式,并确保目标列包含预期类型的值。
-
检查空值: 确保的目标变量
y_train
中没有空值或NaN值。可以使用以下方法处理空值: - 删除包含空值的行。
- 使用平均值、中位数或最频繁值等策略填充空值。
通过执行这些步骤,应该能够解决“未知标签类型”错误并成功使用
cross_val_score
函数。