首页 > 其他分享 >实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

时间:2022-11-06 17:11:31浏览次数:44  
标签:控制器 parser datapath port msg 开源 ofproto RYU id

一、实验目的
1、能够独立部署RYU控制器;
2、能够理解RYU控制器实现软件定义的集线器原理;
3、能够理解RYU控制器实现软件定义的交换机原理。

二、实验环境
Ubuntu 20.04 Desktop amd64

三、实验要求
(一)基本要求
1、搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。

 

 

 构建topo

sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10

 

 

连接ryu控制器

ryu-manager ../ryu/ryu/app/gui_topology/gui_topology.py --observe-links

 

通过Ryu的图形界面查看网络拓扑,在浏览器中输入127.0.0.1:8080

2、阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。

  • 编写L2Switch.py
  •  from ryu.base import app_manager
     from ryu.controller import ofp_event
     from ryu.controller.handler import MAIN_DISPATCHER
     from ryu.controller.handler import set_ev_cls
     from ryu.ofproto import ofproto_v1_0
    
     class L2Switch(app_manager.RyuApp):
         OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
    
         def __init__(self, *args, **kwargs):
             super(L2Switch, self).__init__(*args, **kwargs)
    
         @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
         def packet_in_handler(self, ev):
             msg = ev.msg
             dp = msg.datapath
             ofp = dp.ofproto
             ofp_parser = dp.ofproto_parser
    
             actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
    
             data = None
             if msg.buffer_id == ofp.OFP_NO_BUFFER:
                  data = msg.data
    
             out = ofp_parser.OFPPacketOut(
                 datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
                 actions=actions, data = data)
             dp.send_msg(out)
  • 运行L2Switch.py

 

重新构建拓扑,并对h2、h3节点进行抓包

 

h1 ping h2

 

h1 ping h3

 

查看流表

 

 

 

 

pox下查看拓扑流表

 

 

 

对比可得,ryu下查不到流表,而在pox下可查看流表!

 

 

 

 3、编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)

  • L2_212006236.py
  • from ryu.base import app_manager
    from ryu.controller import ofp_event
    from ryu.controller.handler import MAIN_DISPATCHER
    from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
    from ryu.controller.handler import set_ev_cls
    from ryu.ofproto import ofproto_v1_3
    
    class L2Switch(app_manager.RyuApp):
        OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
    
        def __init__(self, *args, **kwargs):
            super(L2Switch, self).__init__(*args, **kwargs)
    
        @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
        def switch_features_handler(self, ev):
            datapath = ev.msg.datapath
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
    
            # install table-miss flow entry
            #
            # We specify NO BUFFER to max_len of the output action due to
            # OVS bug. At this moment, if we specify a lesser number, e.g.,
            # 128, OVS will send Packet-In with invalid buffer_id and
            # truncated packet data. In that case, we cannot output packets
            # correctly.  The bug has been fixed in OVS v2.1.0.
            match = parser.OFPMatch()
            actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                              ofproto.OFPCML_NO_BUFFER)]
            self.add_flow(datapath, 0, match, actions)
    
        def add_flow(self, datapath, priority, match, actions, buffer_id=None):
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
    
            inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                                 actions)]
            if buffer_id:
                mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                        priority=priority, match=match,
                                        instructions=inst)
            else:
                mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                        match=match, instructions=inst)
            datapath.send_msg(mod)
    
        @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
        def packet_in_handler(self, ev):
            msg = ev.msg
            dp = msg.datapath
            ofp = dp.ofproto
            ofp_parser = dp.ofproto_parser
            in_port = msg.match['in_port']
    
            actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
    
            data = None
            if msg.buffer_id == ofp.OFP_NO_BUFFER:
                 data = msg.data
    
            out = ofp_parser.OFPPacketOut(
                datapath=dp, buffer_id=msg.buffer_id, in_port=in_port,
                actions=actions, data = data)
            dp.send_msg(out)

    运行L2_212006158.py

  • ryu-manager L2_212006158.py

    创建topo

  • sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow13

    测试

  • pingall

    查看流表

  • dpctl dump-flows

(二)进阶要求
1、阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:
simple_switch_13.py分析

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# 引入包
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
    # 指定OpenFlow版本为1.3
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        self.mac_to_port = {} # 一个保存(交换机id, mac地址)到转发端口的字典

    # 处理EventOFPSwitchFeatures事件
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()#match:流表项匹配,OFPMatch():不匹配任何信息
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                        ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)#添加流表项

    # 添加流表
    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        # 获取交换机信息
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # 包装action 
        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                           actions)]
        # 判断是否有buffer_id,生成相应的mod对象
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst)
        # 发送mod
        datapath.send_msg(mod)

    # 触发packet in事件时,调用_packet_in_handler函数
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                            ev.msg.msg_len, ev.msg.total_len)
        # 获取Packet_In报文中的各种信息:包信息,交换机信息,协议等等
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        # 忽略LLDP类型
        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return

        # 获取源端口,目的端口
        dst = eth.dst
        src = eth.src

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # 学习包的源地址,和交换机上的入端口绑定
        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port

        # 在字典中查找目的mac地址是否有对应的出端口 
        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        # 没有就进行洪泛
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]

        # 下发流表处理后续包,不再触发 packet in 事件
        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data
        # 发送Packet_out数据包
        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        # 发送流表
        datapath.send_msg(out)

a) 代码当中的mac_to_port的作用是什么?

保存mac地址到交换机端口的映射

b) simple_switch和simple_switch_13在dpid的输出上有何不同?  

simple_switch.py : dpid = datapath.id

simple_switch 直接输出dpid

simple_switch_13.py:dpid = format(datapath.id, "d").zfill(16)

 

simple_switch_13将dpid填充0至16位

c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?

switch_feature_handler的作用是:将缺失流表项添加到流表中,当封包没有匹配到流表项时,就触发packet_in

d) simple_switch_13是如何实现流规则下发的?

在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。
如果以太网类型是LLDP类型,则不予处理。
如果不是,则获取源端口目的端口,以及交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。
如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流动作时加上buffer_id,向交换机发送流表。

e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?

switch_features_handler下发流表的优先级更高

2、编程实现和ODL实验的一样的硬超时功能。

通过控制开断L2_212006236.py来实现

  • 修改simple_switch_13.py代码实现硬超时功能

    # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
    # implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    # 引入包
    from ryu.base import app_manager
    from ryu.controller import ofp_event
    from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
    from ryu.controller.handler import set_ev_cls
    from ryu.ofproto import ofproto_v1_3
    from ryu.lib.packet import packet
    from ryu.lib.packet import ethernet
    from ryu.lib.packet import ether_types
    
    
    class SimpleSwitch13(app_manager.RyuApp):
        # 指定OpenFlow版本为1.3
        OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
    
        def __init__(self, *args, **kwargs):
            super(SimpleSwitch13, self).__init__(*args, **kwargs)
            self.mac_to_port = {} # 一个保存(交换机id, mac地址)到转发端口的字典
    
        # 处理EventOFPSwitchFeatures事件
        @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
        def switch_features_handler(self, ev):
            datapath = ev.msg.datapath
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
    
            # install table-miss flow entry
            #
            # We specify NO BUFFER to max_len of the output action due to
            # OVS bug. At this moment, if we specify a lesser number, e.g.,
            # 128, OVS will send Packet-In with invalid buffer_id and
            # truncated packet data. In that case, we cannot output packets
            # correctly.  The bug has been fixed in OVS v2.1.0.
            match = parser.OFPMatch()#match:流表项匹配,OFPMatch():不匹配任何信息
            actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                            ofproto.OFPCML_NO_BUFFER)]
            self.add_flow(datapath, 0, match, actions)#添加流表项
    
        # 添加流表
        def add_flow(self, datapath, priority, match, actions, buffer_id=None,hard_timeout=0):
            # 获取交换机信息
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
    
            # 包装action 
            inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                                actions)]
            # 判断是否有buffer_id,生成相应的mod对象
            if buffer_id:
                mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                        priority=priority, match=match,
                                        instructions=inst,hard_timeout=hard_timeout)
            else:
                mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                        match=match, instructions=inst,hard_timeout=hard_timeout)
            # 发送mod
            datapath.send_msg(mod)
    
        # 触发packet in事件时,调用_packet_in_handler函数
        @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
        def _packet_in_handler(self, ev):
            # If you hit this you might want to increase
            # the "miss_send_length" of your switch
            if ev.msg.msg_len < ev.msg.total_len:
                self.logger.debug("packet truncated: only %s of %s bytes",
                                ev.msg.msg_len, ev.msg.total_len)
            # 获取Packet_In报文中的各种信息:包信息,交换机信息,协议等等
            msg = ev.msg
            datapath = msg.datapath
            ofproto = datapath.ofproto
            parser = datapath.ofproto_parser
            in_port = msg.match['in_port']
    
            pkt = packet.Packet(msg.data)
            eth = pkt.get_protocols(ethernet.ethernet)[0]
    
            # 忽略LLDP类型
            if eth.ethertype == ether_types.ETH_TYPE_LLDP:
                # ignore lldp packet
                return
    
            # 获取源端口,目的端口
            dst = eth.dst
            src = eth.src
    
            dpid = format(datapath.id, "d").zfill(16)
            self.mac_to_port.setdefault(dpid, {})
    
            self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
    
            # 学习包的源地址,和交换机上的入端口绑定
            # learn a mac address to avoid FLOOD next time.
            self.mac_to_port[dpid][src] = in_port
    
            # 在字典中查找目的mac地址是否有对应的出端口 
            if dst in self.mac_to_port[dpid]:
                out_port = self.mac_to_port[dpid][dst]
            # 没有就进行洪泛
            else:
                out_port = ofproto.OFPP_FLOOD
    
            actions = [parser.OFPActionOutput(out_port)]
            actions_timeout = []
    
            # 下发流表处理后续包,不再触发 packet in 事件
            # install a flow to avoid packet_in next time
            if out_port != ofproto.OFPP_FLOOD:
                match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
                # verify if we have a valid buffer_id, if yes avoid to send both
                # flow_mod & packet_out
                if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                    self.add_flow(datapath, 2, match, actions_timeout, msg.buffer_id,hard_timeout=10)
                    self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                    return
                else:
                    self.add_flow(datapath, 2, match, actions_timeout,hard_timeout=10)
                    self.add_flow(datapath, 1, match, actions)
            data = None
            if msg.buffer_id == ofproto.OFP_NO_BUFFER:
                data = msg.data
            # 发送Packet_out数据包
            out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                        in_port=in_port, actions=actions, data=data)
            # 发送流表
            datapath.send_msg(out)

(三)个人感想

本次实验考验了对ryu的使用以及在ping通期间的一些注意

也依旧考验了对于学生的代码认知能力。

 

标签:控制器,parser,datapath,port,msg,开源,ofproto,RYU,id
From: https://www.cnblogs.com/123456aabbssdd/p/16863059.html

相关文章

  • Java 超新星开源项目 Solon v1.10.10 发布
    一个更现代感的Java应用开发框架:更快、更小、更自由。主框架仅0.1MB。Helloworld:@ControllerpublicclassApp{publicstaticvoidmain(String[]args){......
  • Kubernetes控制器工作流程
    Kubernetes控制器会监视资源的创建/更新/删除事件,并触发Reconcile函数作为响应。Kubernetes水平触发API的实现方式为:监视系统的实际状态,并与对象的Spec中定义的期望状态进......
  • Codelf 搜索开源代码帮程序员命名
    "计算机科学里两件最难的事:缓存失效和命名。"Codelf通过搜索在线开源平台Github,Bitbucket,GoogleCode,Codeplex,Sourceforge,FedoraProject的项目源码,帮开发者从......
  • 基于AM5728的振动控制器软硬件设计
    上世纪由于技术的限制,大都主要发展单轴振动控制系统,但随着实验环境和要求的复杂化,单轴的振动控制系统已经不能满足工业试验的要求,因此,世界各国开始研究多轴振动控制系统......
  • 成熟企业级开源监控解决方案Zabbix6.2关键功能实战-上
    @目录概述定义监控作用使用理解监控对象和指标架构组成常用监控软件分析版本选型俗语安装部署方式部署zabbix-agent概述定义Zabbix官网地址https://www.zabbix.com/......
  • 实验6:开源控制器实践——RYU
    一、实验目的能够独立部署RYU控制器;能够理解RYU控制器实现软件定义的集线器原理;能够理解RYU控制器实现软件定义的交换机原理。二、实验环境Ubuntu20.04Desktopam......
  • 基于开源IM即时通讯框架MobileIMSDK:RainbowChat-iOS端v6.1版已发布
    关于MobileIMSDKMobileIMSDK是一套专门为移动端开发的开源IM即时通讯框架,超轻量级、高度提炼,一套API优雅支持UDP 、TCP 、WebSocket 三种协议,支持iOS、Android、H5......
  • Google 正式开源 Paranoid
    Google近日正式开源了Paranoid,这是一个用于识别加密制品(cryptographicartifacts)中常见漏洞的项目。​​​​Paranoid支持测试多个加密制品,其中包括如数字签名、通用伪......
  • 英雄无敌3开源引擎vcmi的编译安装
      vcmi是什么?vcmi是经典的SLG英雄无敌3的开源游戏引擎。原来的英雄无敌3只能在Windows上玩,现在通过vcmi,我们也可以在Unix/Linux,苹果等其它系统上玩了。......
  • 实验6:开源控制器实践——RYU
    1.搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。建立拓扑连接ryu图形界面2.阅读Ryu文档的TheFirstApplication一节,运......