CF546E Soldier and Traveling
英文原题:
对于这种类型的题目,又是增加,又是减少的,我们可以使用网络流进行转化。
说句废话:
网络流这个东西,趣味十足,上可顶替匈牙利算法,下可转化动态规划。它似水一般灵活,总是可以出乎意料地解决问题。
好了,说回来,看到这种题目,你有什么疑惑?
说说我的吧:
信息这么多($a_i$ 和 $b_i$),怎么保存?
这么多的点,无组织,无纪律,怎么办呢?
这情况也太多了吧,怎么
暴搜思考呢?即使知道可行,这题的输出怎么办呢?
真恶心
我们从网络最大流的角度一个一个来思考吧!
1. 信息这么多,怎么保存?
我们可以把一个点的信息一分为2,让他们整齐罗列。
千万不要误以为 $a_i$ 和 $b_i$ 为节点,图中只是形象化地阐述“把一个点的信息一分为2”
2. 这么多的点,无组织,无纪律,怎么办呢?
那就找两个领导把他们汇总起来,这两个领导叫做源点以及汇点。
那流量是多少呢?
看图!
看左半部分,点 $i$ 的流量为 $a_i$。
同理,右半部分流量为 $b_i$。
中间部分暂不考虑
为什么要这样干呢?
现在假设 $S$ 点有无穷无尽的水资源。
那么可以往每个左边的河道里塞满水,也就是对于左边的点 $i$(图中是靠近红点的四个点)的初始值为 $a_i$。
也就是对应题目中“每个点初始时有 $a_i$ 个人”的条件。
同样的道理,经过中间一番乱七八糟的处理后,从右边流出的水应为 $b_1,b_2,\dots,b_n$,表示最终处理后,对于右边的点 $i$ (图中是靠近绿点的四个点)最终为 $b_i$。
也就是对应题目中“每个点最终有 $b_i$ 个人”的条件。
3. 这情况也太多了吧,怎么思考呢?
也就是考虑中间部分。
首先,有些人可以选择留下。那么对于这些点的水,随它们流,连接 $n$ 条边,流量为 $+\infin$。
当然,如果有边相连,那也随便流,连接 $m$ 条边(与题目中的 $m$ 意义相同),如图(假设有这些边)。
于是乎,跑一遍Dinic算法足矣!
- 即使知道可行,这题的输出怎么办呢?
真恶心
众所周知,Dinic会在找到增广路时,建立反边,以便反悔。
那么这些反边,就是我们利用的对象。
一条边的反边的权值不就是流过该边的流量吗?
把中间部分的每条反边揪出来,在保存到一个数组里即可。
AC Code
#include <iostream>
#include <cstring>
#include <algorithm>
#include <numeric>
const int N = 210, M = 1410, INF = 1e9;
struct Node
{
int to;
int next;
int w;
}e[M];
int head[N], cur[N], idx = 1;
void add(int a, int b, int c) // 加边
{
idx++;
e[idx].to = b;
e[idx].next = head[a];
e[idx].w = c;
head[a] = idx;
idx++;
e[idx].to = a;
e[idx].next = head[b];
e[idx].w = 0;
head[b] = idx;
}
int n, m;
int a[N];
int b[N];
int S, T;
int sum1, sum2; // sum1:a sum2:b
int d[N];
bool bfs()
{
static int q[N]; // 队列
int hh = 0, tt = 0;
memset(d, 0, sizeof(d));
q[0] = S;
cur[S] = head[S];
d[S] = 1;
while (hh <= tt)
{
int t = q[hh++];
for (int i = head[t]; i; i = e[i].next)
{
int to = e[i].to;
if (!d[to] && e[i].w)
{
cur[to] = head[to];
d[to] = d[t] + 1;
q[++tt] = to;
if (to == T) return true;
}
}
}
return false;
}
int dinic(int u, int limit)
{
if (u == T) return limit;
int rest = limit;
for (int i = cur[u]; i && rest; i = e[i].next)
{
cur[u] = i;
int to = e[i].to;
if (d[to] == d[u] + 1 && e[i].w)
{
int k = dinic(to, std::min(rest, e[i].w));
if (!k) d[to] = 0;
rest -= k;
e[i].w -= k;
e[i ^ 1].w += k;
}
}
return limit - rest;
}
int map[N][N]; // 记录反边信息,即结果
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cin >> n >> m;
for (int i = 1; i <= n; i++)std::cin >> a[i];
for (int i = 1; i <= n; i++)std::cin >> b[i];
sum1 = std::accumulate(a + 1, a + n + 1, 0); // 求和
sum2 = std::accumulate(b + 1, b + n + 1, 0);
if(sum1 != sum2) //直接排除
{
std::cout << "NO" << '\n';
return 0;
}
for (int i = 1; i <= n; i++) add(0, i, a[i]); // 左
for (int i = n + 1; i <= n * 2; i++) add(i, n * 2 + 1, b[i - n]); // 右
for (int i = 1; i <= n; i++) add(i, i + n, INF); // 中1
for (int i = 1; i <= m; i++) // 中2
{
int a, b;
std::cin >> a >> b;
add(a, b + n, INF);
add(b, a + n, INF);
}
S = 0, T = n * 2 + 1;
auto query = [&]() // Dinic 模板
{
int maxflow = 0, flow = 0;
while (bfs())
{
while (flow = dinic(S, INF))
{
maxflow += flow;
}
}
return maxflow;
};
if (query() != sum1) // 直接排除
{
std::cout << "NO" << '\n';
return 0;
}
else // 扣反边
{
std::cout << "YES" << '\n';
int t = 4 * n + 2;
for (int i = 1; i <= 2 * m + n; i++)
{
map[e[t ^ 1].to][e[t].to - n] += e[t ^ 1].w; // 注意要 -n
t += 2;
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
std::cout << map[i][j] << ' ';
}
std::cout << '\n';
}
}
return 0;
}
标签:head,CF546E,idx,int,sum2,sum1,Soldier,Traveling,include
From: https://www.cnblogs.com/SunnyYuanJiawei/p/16861388.html