[锂电池寿命预测]基于Transformer-BiLSTM的锂电池剩余寿命预测
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train = double(reshape(P_train, 15, 1, 1, M));
P_test = double(reshape(P_test , 15, 1, 1, N));
t_train = t_train';
t_test = t_test' ;
%% 数据格式转换
for i = 1 : M
p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
p_test{i, 1} = P_test( :, :, 1, i);
end
%% 创建模型
layers = [
sequenceInputLayer(15) % 建立输入层
lstmLayer(10, 'OutputMode', 'last') % LSTM层
reluLayer % Relu激活层
fullyConnectedLayer(1) % 全连接层
regressionLayer]; % 回归层
%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法
'MaxEpochs', 1000, ... % 最大训练次数
'InitialLearnRate', 5e-3, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率下降
'LearnRateDropFactor', 0.1, ... % 学习率下降因子
'LearnRateDropPeriod', 800, ... % 经过800次训练后 学习率为 0.005 * 0.1
'Shuffle', 'every-epoch', ... % 每次训练打乱数据集
'Plots', 'training-progress', ... % 画出曲线
'Verbose', false);
%% 训练模型
net = trainNetwork(p_train, t_train, layers, options);
%% 仿真预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);
标签:...,寿命,BiLSTM,%%,ps,train,mapminmax,test,锂电池
From: https://blog.csdn.net/m0_57362105/article/details/145234734