什么是智能体 (Agent)
一种基于LLM(LargeLanguage Model)的能够感知环境、做出决策并执行行动以实现特定目标的自主系统。与传统人工智能不同,Al Agent 模仿人类行为模式解决问题,通过独立思考和调用工具逐步完成给定目标,实现自主操作。
通用智能体平台
以Agent为核心技术驱动,构建通用智能体平台,通过在智能体感知、记忆、规划和执行各关键环节的能力攻关,以适应不断变化的实际业务和日常办公需求,提供更加个性化和精准的服务,并助力工程人员解放脑、解放手、想的更全、做的更准,共同推动了其在更多复杂场景下的应用。
什么是LLM (Large Language Model)
大语言模型是一类基于深度学习的人工智能模型,旨在处理和生成自然语言文本。通过训练于大规模文本数据,使得大语言模型能够理解并生成与人类语言相似的文本,执行各类自然语言处理任务。
LLM的训练及使用
LLM能够理解并生成与人类语言相似的文本,执行各类自然语言处理任务,具体可应用场景包括而不限于文本生成、机器翻译、摘要生成、对话系统、情感分析等。其具有强大的泛化能力、能够处理多种任务。
LLM的训练
LLM的训练过程分为预训练和微调两个阶段。
-
预训练阶段
模型在大规模未标注文本数据上进行自监督学习,学习通用的语言表示。
-
微调阶段
模型在特定任务的标注数据上进行有监督学习,调整模型参数以适应具体任务需求。
LLM的使用
一方面,对于直观的日常使用,用户输入问题(提示词,Prompt),大模型给出该问题的回答。
另一方面,对于基于LLM的AI应用编程,可通过以指定格式调用LLM的API,获取问题的答案。
基于LLM的Agent框架
-
LLM:对标人类大脑,思考如何解决问题、给出怎样的回答。
-
记忆:长期记忆加短期记忆。即智能体使用的历史记录、系统数据,以及智能体执行过程中产生的各种中建信息。
-
规划技能:提示词编排、意图理解、任务分解、自我反思。
-
工具使用:智能体在执行任务中可能会使用到的各种工具接口。
Transformer架构
LLM的核心技术架构是Transformer,这是一个基于自注意力机制的深度学习模型。Transformer架构的关键在于其能够并行处理序列数据,大大提高了模型的训练效率和性能
参数规模
LLM通常采用大规模神经网络,参数数量从数百万到数十亿不等,例如通义干问(Qwen-7B)具有70亿的参数规模训练数据需要高质量的、经过预处理的多模态数据。参数规模的增加使模型具有更强的学习和泛化能力,能够处理复杂的语言任务,但也带来了计算成本和资源需求的显著增加。
什么是RAG
LLM回答用户问题时,是基于训练LLM时使用的文本数据进行的。而面对未知知识的问题,它并不能正确回答而容易产生错误的结果,即大模型的幻觉。
什么是RAG
RAG(Retrieval-augmented Generation)是一种自然语言查询方法,通过一个检索信息组件从外部知识源获取附加信息,馈送到LLM prompt以更准确地回答所需的问题。通过额外的知识来增强LLM 以回答问题,用以减少 LLM产生幻觉的倾向。
利用RAG减少幻觉
基于RAG技术,可以通过构建一个知识库,让LLM能够在回答问题时以这个知识库为基础,具备回答知识库中的相关内容的能力。
RAG的优势
基于RAG技术创建的知识库,可以比较便利地增删改其中的文档,可以支持更频繁的更新。
RAG的整体流程
RAG的整体流程分为两大步:
-
一是事先的索引丨(lndexing)也即是从私有文档构建知识库的过程;即为图蓝色虚线链路。
-
二是即时的查询(Querying)也即是针对已构建的知识库进行查询问答的过程。即为图红色虚线链路。先检索,然后生成。
RAG的效果
-
一是赋予LLM回答私有知识库问题的能力,减弱幻觉;
-
二是提供了回答中引用的原文出处,提高检索效率,同时便于直接对比原文确保LLM回答的准确性在智能问答、文档摘要、数据整理等领域发挥重要作用
什么是提示词 (工程)
提示词(Prompt)是指向LLM提供输入以引导其生成特定输出的文本或指令。
提示词
提示词包括两类,系统提示词与用户提示词。用户提示词即为用户的问题;系统提示词为人工智能应用内置的指向LLM的一组初始指令或背景信息,用于指导LLM的行为方式和响应模式。
一般情况下,提示词更多的是指用户提示词、即用户发送给LLM的问题。
提示词对LLM的影响
在生成文本时,LLM会试图理解并根据其理解生成相应的响应LLM生成的回答的质量受用户提示词的影响,更完善的提示词能够让LLM更好地理解用户意图、给出更契合更完善的回答
如何优化提示词
在提出用户问题时候,应该清晰而具体地表达指令,提出具体的需求;如果对LLM的输出格式有要求,那么最好提供参考文本作为示例。
如何编写更好的提示词
更为完善的提示词基本组成部分:
-
指令:要求模型对文本的处理动作。
-
指令的对象:需要模型处理的文本。
-
示例:案例或思维模型提示。
-
输出要求:对于输出内容的内容和格式要求;
-
异常情况:对于模型无法执行,或指令信息缺失时的异常处理机制。
下图为具体的示例(询问旅游规划),可以发现,在直接使用例如OpenAI等提供的LLM时,为了获取更好的问答体验,需要花费较长时间、较多心思来编写更好更完善的提示词,使用体验反而可能变差了
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题