首页 > 其他分享 >matlibplot从入门到精通——基本使用

matlibplot从入门到精通——基本使用

时间:2022-11-01 18:06:08浏览次数:67  
标签:精通 plt set 入门 random np client matlibplot ax


导入库

import matplotlib.pyplot as plt
import numpy as np
# %matplotlib inline

生成数据

#define some data
x = np.linspace(0,10,100) # 100 points starting from 0
mu, sigma = 0, 0.1 # mean and standard deviation
y = np.random.normal(mu, sigma, 100) # creating data of normal distribution

折线数据绘图

plt.plot(x, y)

matlibplot从入门到精通——基本使用_#define

存储图片

plt.savefig('PlotA.png') # saving images on local machine

自定义轴、标题

#  plot (Time Series)
fig, ax = plt.subplots()
ax.plot(x, y, color='red')
ax.grid()
ax.set_xlabel('Time (in Minute)')
ax.set_ylabel(' Stock Price')
ax.set_title(' Stock Price Movement')

饼图绘制

# Pie Chart
import numpy as np
import matplotlib.pyplot as plt
n = 6
Z = np.random.uniform(0,1,n)
plt.pie(Z)
plt.show()

matlibplot从入门到精通——基本使用_数据可视化_02

直方图绘制

n1 = np.random.randn(1000)
n2 = np.random.uniform(-1,5,800)
fig, axes = plt.subplots(1, 2, figsize=(10,4)) #One row, Two columns for position of plots
axes[0].hist(n1)
axes[0].set_title("Histogram: Normal Distribution")
axes[0].set_xlim((min(n1), max(n1)))
axes[1].hist(n2)
axes[1].set_title("Histogram: Uniform Distribution")
axes[1].set_xlim((min(n2), max(n2)));

matlibplot从入门到精通——基本使用_数据_03

箱型图绘制

# Boxplots
# Create data
np.random.seed(10)
client_1 = np.random.normal(40, 8, 50)
client_2 = np.random.normal(50, 10, 50)
client_3 = np.random.normal(50, 15, 50)
client_4 = np.random.normal(60, 25, 50)

## combine these different collections into a list
data_to_plot = [client_1, client_2, client_3, client_4]
# Create a figure instance
fig = plt.figure(1, figsize=(9, 6))
# Create an axes instance
ax = fig.add_subplot(111)
# Create the boxplot
bp = ax.boxplot(data_to_plot)
# Save the figure
fig.savefig('Client_Comparison.png', bbox_inches='tight')
ax.set_xticklabels(['client1', 'client2', 'client3', 'client4'])

matlibplot从入门到精通——基本使用_python_04

多条数据绘制

# Multiple plots in a single diagram
t = np.arange(0,50)
fig, ax = plt.subplots()
plt.plot(t,client_1,'r') # plotting t,a separately
plt.plot(t,client_2,'b') # plotting t,b separately
plt.plot(t,client_3,'g') # plotting t,c separately

#plt.set_title("KPI")
plt.show()

matlibplot从入门到精通——基本使用_数据可视化_05


标签:精通,plt,set,入门,random,np,client,matlibplot,ax
From: https://blog.51cto.com/u_13859040/5814615

相关文章