文章目录
Kaggle
1、项目背景
使用商店、促销和竞争对手数据预测销售Rossmann在欧洲国家经营着3000多家日化用品超市。目前,Rossmann商店经理的任务是提前6周预测他们的日销售额。商店的销售受到许多因素的影响,包括促销、竞争、学校和国家假日、季节性和地域性。由于数以千计的管理者根据自己的特殊情况预测销售,结果的准确性可能会有很大的差异。
因此使用机器学习算法对销量进行预测,Rossmann要求预测德国1115家商店的6周日销售额。可靠的销售预测使商店经理能够制定有效的员工时间表,提高生产力和积极性。
这就是算法和零售、物流领域的一次深度融合,从而提前备货,减少库存、提升资金流转率,促进公司更加健康发展,为员工更合理的工作、休息提供合理安排,为工作效率提高保驾护航。
2、数据介绍
- train.csv - 包含销售情况的历史数据文件
- test.csv - 不包含销售情况的历史数据文件
- sample_submission.csv - 数据提交样本文件
- store.csv - 商店更多信息文件
StateHoliday:通常所有商店都在国家假日关门:a = 公共假日, b = 复活节假日,c = 圣诞节,0
= 无
3、数据加载
3.1 查看数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import xgboost as xgb
import time
train = pd.read_csv('./data/train.csv',dtype={'StateHoliday':np.string_}) # 加载数据时,为特定字段指定了数据类型
test = pd.read_csv('./data/test.csv',dtype={'StateHoliday':np.string_})
store = pd.read_csv('./data/store.csv') # 每个店铺的详情
display(train.head(),test.head(),store.head())
- StateHoliday中数据为:a = 公共假日, b = 复活节假日,c = 圣诞节,0 = 无。既有字符串也有数
字,需要指定类型 - 数据中存在空数据,一次需要处理空数据
3.2 空数据处理
3.2.1 训练数据
train.isnull().sum() # 表明train这个数据中没有空数据
Store 0
DayOfWeek 0
Date 0
Sales 0
Customers 0
Open 0
Promo 0
StateHoliday 0
SchoolHoliday 0
dtype: int64
train数据无缺失,因此无需处理
3.2.2 测试数据
test.isnull().sum()
Id 0
Store 0
DayOfWeek 0
Date 0
Open 11
Promo 0
StateHoliday 0
SchoolHoliday 0
dtype: int64
cond = test['Open'].isnull()
test[cond]
cond = train['Store'] == 622
df = train[cond]
df.sort_values(by = 'Date').iloc[-50:] # 根据过往的数据,对测试数据中622号店铺进行填充
# 原来大部分情况,622都是营业!
test.fillna(1,inplace=True) # 填充空数据
test.isnull().sum()
Id 0
Store 0
DayOfWeek 0
Date 0
Open 0
Promo 0
StateHoliday 0
SchoolHoliday 0
dtype: int64
3.3.3 商店数据处理
store.isnull().sum()
Store 0
StoreType 0
Assortment 0
CompetitionDistance 3
CompetitionOpenSinceMonth 354
CompetitionOpenSinceYear 354
Promo2 0
Promo2SinceWeek 544
Promo2SinceYear 544
PromoInterval 544
dtype: int64
v1 = 'CompetitionDistance'
v2 = 'CompetitionOpenSinceMonth'
v3 = 'CompetitionOpenSinceYear'
v4 = 'Promo2SinceWeek'
v5 = 'Promo2SinceYear'
v6 = 'PromoInterval'
# v2和v3 同时缺失
store[(store[v2].isnull()) & (store[v3].isnull())].shape
# v4、v5、v6同时缺失
store[(store[v4].isnull())&(store[v5].isnull())&(store[v6].isnull())].shape
# 下面对缺失数据进行填充
# 店铺竞争数据缺失,而且缺失的都是对应的。
# 原因不明,而且数量也比较多,如果用中值或均值来填充,有失偏颇。暂且填0,解释意义就是刚开业
# 店铺促销信息的缺失是因为没有参加促销活动,所以我们以0填充
store.fillna(0,inplace=True) # 填充成,解释含义:刚开业
store.isnull().sum()
Store 0
StoreType 0
Assortment 0
CompetitionDistance 0
CompetitionOpenSinceMonth 0
CompetitionOpenSinceYear 0
Promo2 0
Promo2SinceWeek 0
Promo2SinceYear 0
PromoInterval 0
dtype: int64
3.3.4 销售时间关系
分析店铺销量随时间的变化
cond = train['Sales'] > 0
sales_data = train[cond] # 获取销售额为正的数据
sales_data.loc[train['Store'] == 1].plot(x = 'Date',y = 'Sales',title = 'Store_1',
figsize = (16,4),color = 'red')
从图中可以看出店铺的销售额是有周期性变化的,一年中11,12月份销量相对较高,可能是季节(圣诞节)因素或者促销等原因。此外从2014年6-9月份的销量来看,6,7月份的销售趋势与8,9月份类似,而我们需要预测的6周在2015年8,9月份,因此我们可以把2015年6,7月份最近6周的1115家店的数据留出作为测试数据,用于模型的优化和验证!
test['Date'].unique() # 测试数据,要预测8~9月份的销售情况
array(['2015-09-17', '2015-09-16', '2015-09-15', '2015-09-14',
'2015-09-13', '2015-09-12', '2015-09-11', '2015-09-10',
'2015-09-09', '2015-09-08', '2015-09-07', '2015-09-06',
'2015-09-05', '2015-09-04', '2015-09-03', '2015-09-02',
'2015-09-01', '2015-08-31', '2015-08-30', '2015-08-29',
'2015-08-28', '2015-08-27', '2015-08-26', '2015-08-25',
'2015-08-24', '2015-08-23', '2015-08-22', '2015-08-21',
'2015-08-20', '2015-08-19', '2015-08-18', '2015-08-17',
'2015-08-16', '2015-08-15', '2015-08-14', '2015-08-13',
'2015-08-12', '2015-08-11', '2015-08-10', '2015-08-09',
'2015-08-08', '2015-08-07', '2015-08-06', '2015-08-05',
'2015-08-04', '2015-08-03', '2015-08-02', '2015-08-01'],
dtype=object)
4、合并数据
display(train.shape,test.shape)
cond = train['Sales'] > 0
train = train[cond] # 过滤了销售额小于0的数据
train = pd.merge(train,store,on = 'Store',how = 'left')
test = pd.merge(test,store,on = 'Store',how = 'left')
train.info()
Int64Index: 844338 entries, 0 to 844337
Data columns (total 18 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Store 844338 non-null int64
1 DayOfWeek 844338 non-null int64
2 Date 844338 non-null object
3 Sales 844338 non-null int64
4 Customers 844338 non-null int64
5 Open 844338 non-null int64
6 Promo 844338 non-null int64
7 StateHoliday 844338 non-null object
8 SchoolHoliday 844338 non-null int64
9 StoreType 844338 non-null object
10 Assortment 844338 non-null object
11 CompetitionDistance 844338 non-null float64
12 CompetitionOpenSinceMonth 844338 non-null float64
13 CompetitionOpenSinceYear 844338 non-null float64
14 Promo2 844338 non-null int64
15 Promo2SinceWeek 844338 non-null float64
16 Promo2SinceYear 844338 non-null float64
17 PromoInterval 844338 non-null object
dtypes: float64(5), int64(8), object(5)
memory usage: 122.4+ MB
test.info()
Int64Index: 41088 entries, 0 to 41087
Data columns (total 17 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Id 41088 non-null int64
1 Store 41088 non-null int64
2 DayOfWeek 41088 non-null int64
3 Date 41088 non-null object
4 Open 41088 non-null float64
5 Promo 41088 non-null int64
6 StateHoliday 41088 non-null object
7 SchoolHoliday 41088 non-null int64
8 StoreType 41088 non-null object
9 Assortment 41088 non-null object
10 CompetitionDistance 41088 non-null float64
11 CompetitionOpenSinceMonth 41088 non-null float64
12 CompetitionOpenSinceYear 41088 non-null float64
13 Promo2 41088 non-null int64
14 Promo2SinceWeek 41088 non-null float64
15 Promo2SinceYear 41088 non-null float64
16 PromoInterval 41088 non-null object
dtypes: float64(6), int64(6), object(5)
memory usage: 5.6+ MB
5、特征工程
for data in [train,test]:
# 将时间特征进行拆分和转化
data['year']=data['Date'].apply(lambda x:x.split('-')[0]).astype(int)
data['month']=data['Date'].apply(lambda x:x.split('-')[1]).astype(int)
data['day']=data['Date'].apply(lambda x:x.split('-')[2]).astype(int)
# 将'PromoInterval'特征转化为'IsPromoMonth'特征,表示某天某店铺是否处于促销月,1表示是,0表示否
# 提示下:这里尽量不要用循环,用这种广播的形式,会快很多。循环可能会让你等的想哭
month2str={1:'Jan',2:'Feb',3:'Mar',4:'Apr',5:'May',6:'Jun',7:'Jul',8:'Aug',9:'Sep',10:'Oct
',11:'Nov',12:'Dec'}
data['monthstr'] = data['month'].map(month2str)
convert = lambda x: 0 if x['PromoInterval'] == 0 else 1 if x['monthstr'] in x['PromoInterval'] else 0
data['IsPromoMonth']= data.apply(convert, axis=1)
# 将存在其它字符表示分类的特征转化为数字
mappings={'0':0,'a':1,'b':2,'c':3,'d':4}
data['StoreType'].replace(mappings,inplace=True)
data['Assortment'].replace(mappings,inplace=True)
data['StateHoliday'].replace(mappings,inplace=True)
6、构建训练数据和测试数据
# 删掉训练和测试数据集中不需要的特征
df_train=train.drop(['Date','Customers','Open','PromoInterval','monthstr'],axis=
1)
df_test=test.drop(['Id','Date','Open','PromoInterval','monthstr'],axis=1)
# 如上所述,保留训练集中最近六周的数据用于后续模型的测试
X_train=df_train[6*7*1115:]
X_test=df_train[:6*7*1115]
7、数据属性间相关性系数
plt.figure(figsize=(24,20))
plt.rcParams['font.size'] = 12
sns.heatmap(df_train.corr(),cmap='RdYlGn_r',annot=True,vmin=-1,vmax=1)
8、提取模型训练的数据集
_ = plt.hist(X_train['Sales'],bins = 100) # 目标值,销售额,正态分布,不够正!!!
#拆分特征与标签,并将标签取对数处理
y_train = np.log1p(X_train['Sales'])
y_test = np.log1p(X_test['Sales'])
X_train = X_train.drop(['Sales'],axis=1)
X_test = X_test.drop(['Sales'],axis=1)
使用np.log1p进行对目标值处理,目标值更加正态化!
_ = plt.hist(y_train,bins = 100) # 目标值,销售额,正态分布,不够正!!!
9、构建模型
9.1 定义评价函数
均方根百分比误差
#定义评价函数,可以传入后面模型中替代模型本身的损失函数
def rmspe(y,yhat):
return np.sqrt(np.mean((1 - yhat/y)**2))
# 起放大作用
def rmspe_xg(yhat,y):
y=np.expm1(y.get_label())
yhat=np.expm1(yhat)
return 'rmspe',rmspe(y,yhat)
9.2 模型训练
%%time
params = {'objective':'reg:linear',
'booster':'gbtree',
'eta':0.03,
'max_depth':10,
'subsample':0.9,
'colsample_bytree':0.7,
'silent':1,
'seed':10}
num_boost_round = 6000
dtrain = xgb.DMatrix(X_train,y_train)
dtest = xgb.DMatrix(X_test,y_test) # 保留的验证数据
print('模型训练开始……')
evals = [(dtrain,'train'),(dtest,'validation')]
gbm = xgb.train(params,# 模型参数
dtrain, # 训练数据
num_boost_round, # 轮次,决策树的个数
evals = evals,# 验证,评估的数据
early_stopping_rounds=100, # 在验证集上,当连续n次迭代,分数没有提高后,提前终止训练
feval=rmspe_xg,# 模型评估的函数
verbose_eval=True)# 打印输出log日志,每次训练详情
gbm.save_model('./train_model.json')
[0] train-rmse:8.01963 train-rmspe:6230.18506 validation-rmse:8.04813 validation-rmspe:6387.25244
[1] train-rmse:7.77951 train-rmspe:4099.43457 validation-rmse:7.80813 validation-rmspe:4203.82471
[2] train-rmse:7.54664 train-rmspe:2886.67944 validation-rmse:7.57505 validation-rmspe:2959.31250
[3] train-rmse:7.32073 train-rmspe:2119.01221 validation-rmse:7.34880 validation-rmspe:2171.24536
[4] train-rmse:7.10159 train-rmspe:1601.73401 validation-rmse:7.12929 validation-rmspe:1640.44104
[5] train-rmse:6.88913 train-rmspe:1238.18860 validation-rmse:6.91654 validation-rmspe:1267.88232
[6] train-rmse:6.68305 train-rmspe:973.55157 validation-rmse:6.71035 validation-rmspe:996.92786
[7] train-rmse:6.48307 train-rmspe:775.59680 validation-rmse:6.51005 validation-rmspe:793.93579
[8] train-rmse:6.28915 train-rmspe:625.33978 validation-rmse:6.31603 validation-rmspe:640.10901
[9] train-rmse:6.10102 train-rmspe:509.09106 validation-rmse:6.12764 validation-rmspe:520.99493
[10] train-rmse:5.91858 train-rmspe:418.29568 validation-rmse:5.94485 validation-rmspe:427.94669
[11] train-rmse:5.74163 train-rmspe:346.45187 validation-rmse:5.76751 validation-rmspe:354.34009
[12] train-rmse:5.57000 train-rmspe:288.96896 validation-rmse:5.59591 validation-rmspe:295.60095
[13] train-rmse:5.40351 train-rmspe:242.61772 validation-rmse:5.42900 validation-rmspe:248.07785
[14] train-rmse:5.24204 train-rmspe:204.91913 validation-rmse:5.26750 validation-rmspe:209.54759
[15] train-rmse:5.08546 train-rmspe:174.12010 validation-rmse:5.11132 validation-rmspe:178.17413
[16] train-rmse:4.93355 train-rmspe:148.72492 validation-rmse:4.95911 validation-rmspe:152.16476
[17] train-rmse:4.78615 train-rmspe:127.62540 validation-rmse:4.81140 validation-rmspe:130.54283
[18] train-rmse:4.64321 train-rmspe:110.06155 validation-rmse:4.66831 validation-rmspe:112.56993
[19] train-rmse:4.50456 train-rmspe:95.35991 validation-rmse:4.52980 validation-rmspe:97.55514
[20] train-rmse:4.37010 train-rmspe:82.98562 validation-rmse:4.39519 validation-rmspe:84.89100
[21] train-rmse:4.23973 train-rmspe:72.53654 validation-rmse:4.26400 validation-rmspe:74.14584
[22] train-rmse:4.11327 train-rmspe:63.64868 validation-rmse:4.13671 validation-rmspe:65.01503
[23] train-rmse:3.99059 train-rmspe:56.06008 validation-rmse:4.01333 validation-rmspe:57.23002
[24] train-rmse:3.87161 train-rmspe:49.55792 validation-rmse:3.89370 validation-rmspe:50.56471
[25] train-rmse:3.75620 train-rmspe:43.95873 validation-rmse:3.77841 validation-rmspe:44.86082
[26] train-rmse:3.64422 train-rmspe:39.11786 validation-rmse:3.66619 validation-rmspe:39.91478
[27] train-rmse:3.53569 train-rmspe:34.93198 validation-rmse:3.55775 validation-rmspe:35.65234
...
[405] train-rmse:0.13638 train-rmspe:0.00922 validation-rmse:0.15283 validation-rmspe:0.00465
[406] train-rmse:0.13620 train-rmspe:0.00919 validation-rmse:0.15265 validation-rmspe:0.00457
[407] train-rmse:0.13600 train-rmspe:0.00917 validation-rmse:0.15248 validation-rmspe:0.00460
[408] train-rmse:0.13579 train-rmspe:0.00914 validation-rmse:0.15231 validation-rmspe:0.00462
Wall time: 2min 38s
9.2.1 params参数说明
- eta[默认是0.3] 和GBM中的learning rate参数类似。通过减少每一步的权重,可以提高模型的鲁棒性。典型值0.01-0.2
- max_depth [默认是3] 树的最大深度,这个值也是用来避免过拟合的3-10
- subsample[默认是1] 这个参数控制对于每棵树,随机采样的比例。减小这个参数的值算法会更加
保守,避免过拟合。但是这个值设置的过小,它可能会导致欠拟合。典型值:0.5-1 - colsample_bytree[默认是1] 用来控制每颗树随机采样的列数的占比每一列是一个特征0.5-1(要依据特征个数来判断)
- objective[默认是reg:linear]这个参数定义需要被最小化的损失函数。最常用的值有:
- binary:logistic二分类的逻辑回归,返回预测的概率非类别。multi:softmax使用softmax的多分类
器,返回预测的类别。在这种情况下,你还要多设置一个参数:num_class类别数目。
- seed[默认是0]随机数的种子,设置它可以复现随机数据的结果,也可以用于调整参数。
- booster[默认是gbtree ]选择每次迭代的模型,有两种选择:gbtree基于树的模型、gbliner线性模
型 - silent[默认值=0]取0时表示打印出运行时信息,取1时表示以缄默方式运行,不打印运行时信息。
9.2.2 xgb.train()参数说明
- params:这是一个字典,里面包含着训练中的参数关键字和对应的值
- dtrain:训练的数据
- num_boost_round:这是指提升迭代的次数,也就是生成多少基模型
- evals:这是一个列表,用于对训练过程中进行评估列表中的元素。
- feval: 自定义评估函数
- early_stopping_rounds:早期停止次数 ,假设为100,验证集的误差迭代到一定程度在100次内不能再继续降低,就停止迭代。要求evals 里至少有 一个元素。
- verbose_eval (可以输入布尔型或数值型):也要求evals 里至少有 一个元素。如果为True ,则对
- evals中元素的评估结果会输出在结果中;如果输入数字,假设为5,则每隔5个迭代输出一次
- learning_rates 每一次提升的学习率的列表
- xgb_model 在训练之前用于加载的xgb model
9.3 模型评估
print('验证数据表现:') # X_test就是验证数据
X_test.sort_index(inplace=True)
y_test.sort_index(inplace=True)
# 使用算法进行了预测
yhat = gbm.predict(xgb.DMatrix(X_test))
error = rmspe(np.expm1(y_test),np.expm1(yhat))
print('RMSPE:',error)
验证数据表现:
RMSPE: 0.0280719416230981
画图查看,模型评估结果
# 画图查看,模型评估结果
res = pd.DataFrame(data = y_test) # 真实
res['Prediction'] = yhat # 预测
res = pd.merge(X_test,res,left_index=True,right_index=True)
res['Ratio'] = res['Prediction']/res['Sales'] # 预测和真实销量的比率
res['Error'] = abs(1 - res['Ratio']) # 误差率
res['weight'] = res['Sales']/res['Prediction'] # 真实销量占预测值的百分比
from matplotlib import font_manager
fm = font_manager.FontManager()
plt.rcParams['font.family'] = 'STKaiti'
col_1 = ['Sales','Prediction']
col_2 = ['Ratio']
# 随机选择三个店铺,进行可视化
shops = np.random.randint(1,1116,size = 3)
print('全部商店预测值和真实销量的比率是%0.3f' %(res['Ratio'].mean()))
for shop in shops:
cond = res['Store'] == shop
df1 = pd.DataFrame(data = res[cond],columns = col_1)
df2 = pd.DataFrame(data = res[cond],columns = col_2)
df1.plot(title = '%d商店的预测数据和真实销量的对比' % (shop),figsize = (12,4))
df2.plot(title = '%d商店的预测数据和真实销量的比率' % (shop),figsize = (12,4))
全部商店预测值和真实销量的比率是1.002
从分析结果来看,初始模型已经可以比较好的预测保留数据集的销售趋势,但相对真实值,模型的预测值整体要偏高一些。从对偏差数据分析来看,偏差最大的3个数据也是明显偏高。因此,我们可以以保留数据集为标准对模型进行偏差校正。
# 偏差数据
res.sort_values(by = ['Error'],ascending=False)
res[:10]
9.4 模型优化
9.4.1 整体模型优化
weights = [(0.99 + (i/1000)) for i in range(20)]
errors = []
for w in weights:
# 偏差校正
error = rmspe(np.expm1(y_test),np.expm1(yhat * w)) # 这就是对预测值,进行权重乘法,微小改变
errors.append(error)
errors = pd.Series(errors,index=weights)
plt.figure(figsize=(9,6))
errors.plot()
plt.xlabel('权重系数',fontsize = 18)
plt.ylabel('均方根百分比误差',fontsize = 18)
index = errors.argmin()
print('最佳的偏差校正权重:',index,errors.iloc[7],weights[index])
最佳的偏差校正权重: 7 0.0013254117199704312 0.997
因为每个店铺都有自己的特点,而我们设计的模型对不同的店铺偏差并不完全相同,所以我们需要根据不同的店铺进行一个细致的校正。
9.4.2 更加细致的优化(考虑不同店铺)
shops = np.arange(1,1116)
weights1 = [] # 验证数据每个店铺的权重系数 46830
weights2 = [] # 测试数据每个店铺的权重系数 41088,提交到Kaggle官网
for shop in shops:
cond = res['Store'] == shop
df1 = pd.DataFrame(res[cond], columns=col_1) # 验证数据的预测数据和真实销量
cond2 = df_test['Store'] == shop
df2 = pd.DataFrame(df_test[cond2])
weights = [(0.98 + (i/1000)) for i in range(40)]
errors = []
for w in weights:
error = rmspe(np.expm1(df1['Sales']),np.expm1(df1['Prediction'] * w))
errors.append(error)
errors = pd.Series(errors,index = weights)
index = errors.argmin() # 最小的索引
best_weight = np.array(weights[index]) # 只是一个数值
weights1.extend(best_weight.repeat(len(df1)).tolist())
weights2.extend(best_weight.repeat(len(df2)).tolist())
# for循环结束,每个店铺的权重,是多少,计算得到了
# 验证数据调整校正系数的排序
X_test = X_test.sort_values(by = 'Store') # 1,2,3,……1115
X_test['weights1'] = weights1 # 权重和店铺,进行一一对应!
X_test = X_test.sort_index() # 根据索引大小进行排序
weights1 = X_test['weights1']
X_test = X_test.drop('weights1',axis = 1)
# 测试数据调整校正系数
df_test = df_test.sort_values(by = 'Store') # 1,2,3,……1115
df_test['weights2'] = weights2 # 权重和店铺,进行一一对应!
df_test = df_test.sort_index() # 根据索引大小进行排序
weights2 = df_test['weights2']
df_test = df_test.drop('weights2',axis = 1)
yhat_new = yhat * weights1 # 预测销售额,校正
rmspe(np.expm1(y_test),np.expm1(yhat_new))
0.0021121179356354716
9.5 模型预测
使用算法,对测试数据,进行预测,不经任何调整校正
test = xgb.DMatrix(df_test)
y_pred = gbm.predict(test) # 算法预测的结果,结果提交Kaggle
# y_pred 是对数运算的结果
# 真实数据,数据转换,幂运算
# 保存数据,不经任何调整校正
result = pd.DataFrame({'ID':np.arange(1,41089),'Sales':np.expm1(y_pred)})
result.to_csv('./result_1.csv',index=False)
对整体模型进行优化
# 对整体模型进行优化
w = 0.997
result = pd.DataFrame({'ID':np.arange(1,41089),'Sales':np.expm1(y_pred * w)})
result.to_csv('./result_2.csv',index=False)
每个店铺的,权重校正,都不同,细致!!!
# 每个店铺的,权重校正,都不同,细致!!!
result = pd.DataFrame({'ID':np.arange(1,41089),'Sales':np.expm1(y_pred * weights2)})
result.to_csv('./result_3.csv',index=False)
上面构建的模型经过优化后,已经有着不错的表现。如果想继续提高预测的精度,可以在模型融合上试试。
标签:rmspe,rmse,模型,Kaggle,2015,train,Rossmann,test,validation From: https://blog.csdn.net/u014608435/article/details/145027654