首页 > 其他分享 >错误修改系列---基于RNN模型的心脏病预测(pytorch实现)

错误修改系列---基于RNN模型的心脏病预测(pytorch实现)

时间:2025-01-11 23:32:01浏览次数:3  
标签:acc loss RNN Epoch --- test pytorch Train Test

前言


错误一
这个也不算是错误,就是之前数据标准化、划分数据集的时候,我用的很麻烦,如下图(之前):
在这里插入图片描述
这样无疑是很麻烦的,修改后,我们先对数据进行标准化,后再进行划分就会简单很多(详细请看下面代码)


错误二
模型参数输入,这里应该是13个特征维度,而且这里用nn.BCELoss后面处理也不好,因为最后应该还加一层激活函数sigmoid的,所以这次修改采用多分类处理方法,激活函数采用CrossEntropyLoss,具体如图:
在这里插入图片描述
BCELoss、CrossEntropyLoss参考资料

https://blog.csdn.net/qq_36803941/article/details/138673111
https://zhuanlan.zhihu.com/p/98785902
https://www.cnblogs.com/zhangxianrong/p/14773075.html
https://zhuanlan.zhihu.com/p/59800597

修改版本代码

1、数据处理

1、导入库

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from torch.utils.data import DataLoader, TensorDataset
import torch 


device = 'cuda' if torch.cuda.is_available() else 'cpu'
device
'cuda'

2、导入数据

data = pd.read_csv('./heart.csv')

data.head()
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
063131452331015002.30011
137121302500118703.50021
241011302040017201.42021
356111202360117800.82021
457001203540116310.62021
  • age - 年龄
  • sex - (1 = male(男性); 0 = (女性))
  • cp - chest pain type(胸部疼痛类型)(1:典型的心绞痛-typical,2:非典型心绞痛-atypical,3:没有心绞痛-non-anginal,4:无症状-asymptomatic)
  • trestbps - 静息血压 (in mm Hg on admission to the hospital)
  • chol - 胆固醇 in mg/dl
  • fbs - (空腹血糖 > 120 mg/dl) (1 = true; 0 = false)
  • restecg - 静息心电图测量(0:普通,1:ST-T波异常,2:可能左心室肥大)
  • thalach - 最高心跳率
  • exang - 运动诱发心绞痛 (1 = yes; 0 = no)
  • oldpeak - 运动相对于休息引起的ST抑制
  • slope - 运动ST段的峰值斜率(1:上坡-upsloping,2:平的-flat,3:下坡-downsloping)
  • ca - 主要血管数目(0-4)
  • thal - 一种叫做地中海贫血的血液疾病(3 = normal; 6 = 固定的缺陷-fixed defect; 7 = 可逆的缺陷-reversable defect)
  • target - 是否患病 (1=yes, 0=no)

3、数据分析

数据初步分析
data.info()   # 数据类型分析
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   age       303 non-null    int64  
 1   sex       303 non-null    int64  
 2   cp        303 non-null    int64  
 3   trestbps  303 non-null    int64  
 4   chol      303 non-null    int64  
 5   fbs       303 non-null    int64  
 6   restecg   303 non-null    int64  
 7   thalach   303 non-null    int64  
 8   exang     303 non-null    int64  
 9   oldpeak   303 non-null    float64
 10  slope     303 non-null    int64  
 11  ca        303 non-null    int64  
 12  thal      303 non-null    int64  
 13  target    303 non-null    int64  
dtypes: float64(1), int64(13)
memory usage: 33.3 KB

其中分类变量为:sex、cp、fbs、restecg、exang、slope、ca、thal、target

数值型变量:age、trestbps、chol、thalach、oldpeak

data.describe()  # 描述性
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
count303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000
mean54.3663370.6831680.966997131.623762246.2640260.1485150.528053149.6468650.3267331.0396041.3993400.7293732.3135310.544554
std9.0821010.4660111.03205217.53814351.8307510.3561980.52586022.9051610.4697941.1610750.6162261.0226060.6122770.498835
min29.0000000.0000000.00000094.000000126.0000000.0000000.00000071.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%47.5000000.0000000.000000120.000000211.0000000.0000000.000000133.5000000.0000000.0000001.0000000.0000002.0000000.000000
50%55.0000001.0000001.000000130.000000240.0000000.0000001.000000153.0000000.0000000.8000001.0000000.0000002.0000001.000000
75%61.0000001.0000002.000000140.000000274.5000000.0000001.000000166.0000001.0000001.6000002.0000001.0000003.0000001.000000
max77.0000001.0000003.000000200.000000564.0000001.0000002.000000202.0000001.0000006.2000002.0000004.0000003.0000001.000000
  • 年纪:均值54,中位数55,标准差9,说明主要是老年人,偏大
  • 静息血压:均值131.62, 成年人一般:正常血压:收缩压 < 120 mmHg,偏大
  • 胆固醇:均值246.26,理想水平:小于 200 mg/dL,偏大
  • 最高心率:均值149.64,一般静息状态下通常是 60 到 100 次每分钟,偏大

最大值和最小值都可能发生,无异常值

缺失值
data.isnull().sum()
age         0
sex         0
cp          0
trestbps    0
chol        0
fbs         0
restecg     0
thalach     0
exang       0
oldpeak     0
slope       0
ca          0
thal        0
target      0
dtype: int64
相关性分析
import seaborn as sns

plt.figure(figsize=(20, 15))

sns.heatmap(data.corr(), annot=True, cmap='Greens')

plt.show()


在这里插入图片描述

相关系数的等级划分

  • 非常弱的相关性:
    • 0.00 至 0.19 或 -0.00 至 -0.19
    • 解释:几乎不存在线性关系。
  • 弱相关性:
    • 0.20 至 0.39 或 -0.20 至 -0.39
    • 解释:存在一定的线性关系,但较弱。
  • 中等相关性:
    • 0.40 至 0.59 或 -0.40 至 -0.59
    • 解释:有明显的线性关系,但不是特别强。
  • 强相关性:
    • 0.60 至 0.79 或 -0.60 至 -0.79
    • 解释:两个变量之间有较强的线性关系。
  • 非常强的相关性:
    • 0.80 至 1.00 或 -0.80 至 -1.00
    • 解释:几乎完全线性相关,表明两个变量的变化高度一致。

target与chol、没有什么相关性,fbs是分类变量,chol胆固醇是数值型变量,但是从实际角度,这些都有影响,故不剔除特征

4、数据标准化

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X = data.iloc[:, :-1]
y = data.iloc[:, -1]

# 这里只需要对X标准化即可
X = scaler.fit_transform(X)

5、数据划分

这里先划分为:训练集:测试集 = 9:1

from sklearn.model_selection import train_test_split

# 由于要使用pytorch,先将数据转化为torch
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)

# 输出维度
X_train.shape, y_train.shape
(torch.Size([272, 13]), torch.Size([272]))

6、动态加载数据

from torch.utils.data import TensorDataset, DataLoader 
train_dl = DataLoader(TensorDataset(X_train, y_train),                       
                      batch_size=64,                        
                      shuffle=True) 
test_dl  = DataLoader(TensorDataset(X_test, y_test),                       
                       batch_size=64,                        
                       shuffle=False)

2、创建模型

  • 定义一个RNN层
    rnn = nn.RNN(input_size=10, hidden_size=20, num_layers=2, nonlinearity=‘tanh’,
    bias=True, batch_first=False, dropout=0, bidirectional=False)
  • input_size: 输入的特征维度
  • hidden_size: 隐藏层的特征维度
  • num_layers: RNN 层的数量
  • nonlinearity: 非线性激活函数 (‘tanh’ 或 ‘relu’)
  • bias: 如果为 False,则内部不含偏置项,默认为 True
  • batch_first: 如果为 True,则输入和输出张量提供为 (batch, seq, feature),默认为 False (seq, batch, feature)
  • dropout: 如果非零,则除了最后一层,在每层的输出中引入一个 Dropout 层,默认为 0
  • bidirectional: 如果为 True,则将成为双向 RNN,默认为 False
import torch  
import torch.nn as nn 

# 创建模型
'''
该问题本质是二分类问题,故最后一层全连接层用激活函数为:sigmoid
模型结构:
    RNN:隐藏层200,激活函数:relu
    Linear:--> 100(relu) -> 1(sigmoid)
'''
# 创建模型
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        
        self.rnn = nn.RNN(input_size=13, hidden_size=200, num_layers=1, batch_first=True)
        
        self.fc1 = nn.Linear(200, 50)
        #self.fc2 = nn.Linear(100, 50)
        self.fc3 = nn.Linear(50, 2)
        
    def forward(self, x):
        x, hidden1 = self.rnn(x)
        x = self.fc1(x)
        #x = self.fc2(x)
        x = self.fc3(x)
        return x
    

model = Model().to(device)
model
Model(
  (rnn): RNN(13, 200, batch_first=True)
  (fc1): Linear(in_features=200, out_features=50, bias=True)
  (fc3): Linear(in_features=50, out_features=2, bias=True)
)
# 查看模型输出的维度
model(torch.rand(30,13).to(device)).shape
torch.Size([30, 2])

3、模型训练

1、设置超参数

loss_fn = nn.CrossEntropyLoss()
lr = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

2、设置训练函数

def train(dataloader, model, loss_fn, optimizer):
    # 总大小
    size = len(dataloader.dataset)
    # 批次大小
    batch_size = len(dataloader)
    
    # 准确率和损失
    trian_acc, train_loss = 0, 0
    
    # 训练
    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        
        # 模型训练与误差评分
        pred = model(X)
        loss = loss_fn(pred, y)
        
        # 梯度清零
        optimizer.zero_grad()  # 梯度上更新
        # 方向传播
        loss.backward()
        # 梯度更新
        optimizer.step()
        
        # 记录损失和准确率
        train_loss += loss.item()
        trian_acc += (pred.argmax(1) == y).type(torch.float64).sum().item()
    
    # 计算损失和准确率
    trian_acc /= size
    train_loss /= batch_size
    
    return trian_acc, train_loss

3、设置测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    batch_size = len(dataloader)
    
    test_acc, test_loss = 0, 0
    
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            
            pred = model(X)
            loss = loss_fn(pred, y)
            
            test_loss += loss.item()
            test_acc += (pred.argmax(1) == y).type(torch.float64).sum().item()
            
    test_acc /= size 
    test_loss /= batch_size
    
    return test_acc, test_loss

4、模型训练

train_acc = []
train_loss = []
test_acc = []
test_loss = []

# 定义训练次数
epoches = 50

for epoch in range(epoches):
    # 训练
    model.train()
    epoch_trian_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    # 测试
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 记录
    train_acc.append(epoch_trian_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_trian_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
Epoch: 1, Train_acc:49.6%, Train_loss:0.686, Test_acc:58.1%, Test_loss:0.684
Epoch: 2, Train_acc:62.1%, Train_loss:0.682, Test_acc:64.5%, Test_loss:0.671
Epoch: 3, Train_acc:68.0%, Train_loss:0.662, Test_acc:71.0%, Test_loss:0.658
Epoch: 4, Train_acc:69.1%, Train_loss:0.655, Test_acc:77.4%, Test_loss:0.645
Epoch: 5, Train_acc:73.9%, Train_loss:0.643, Test_acc:80.6%, Test_loss:0.632
Epoch: 6, Train_acc:74.3%, Train_loss:0.637, Test_acc:80.6%, Test_loss:0.620
Epoch: 7, Train_acc:75.7%, Train_loss:0.620, Test_acc:80.6%, Test_loss:0.608
Epoch: 8, Train_acc:78.3%, Train_loss:0.612, Test_acc:80.6%, Test_loss:0.596
Epoch: 9, Train_acc:79.8%, Train_loss:0.591, Test_acc:83.9%, Test_loss:0.586
Epoch:10, Train_acc:79.0%, Train_loss:0.590, Test_acc:83.9%, Test_loss:0.575
Epoch:11, Train_acc:81.2%, Train_loss:0.584, Test_acc:83.9%, Test_loss:0.563
Epoch:12, Train_acc:79.8%, Train_loss:0.562, Test_acc:83.9%, Test_loss:0.553
Epoch:13, Train_acc:80.5%, Train_loss:0.546, Test_acc:83.9%, Test_loss:0.542
Epoch:14, Train_acc:80.1%, Train_loss:0.546, Test_acc:83.9%, Test_loss:0.531
Epoch:15, Train_acc:81.2%, Train_loss:0.517, Test_acc:83.9%, Test_loss:0.521
Epoch:16, Train_acc:81.6%, Train_loss:0.521, Test_acc:83.9%, Test_loss:0.509
Epoch:17, Train_acc:82.4%, Train_loss:0.508, Test_acc:83.9%, Test_loss:0.497
Epoch:18, Train_acc:82.7%, Train_loss:0.494, Test_acc:83.9%, Test_loss:0.487
Epoch:19, Train_acc:83.1%, Train_loss:0.496, Test_acc:83.9%, Test_loss:0.477
Epoch:20, Train_acc:82.4%, Train_loss:0.469, Test_acc:83.9%, Test_loss:0.469
Epoch:21, Train_acc:83.1%, Train_loss:0.472, Test_acc:83.9%, Test_loss:0.463
Epoch:22, Train_acc:82.4%, Train_loss:0.451, Test_acc:83.9%, Test_loss:0.458
Epoch:23, Train_acc:83.5%, Train_loss:0.456, Test_acc:83.9%, Test_loss:0.455
Epoch:24, Train_acc:83.1%, Train_loss:0.438, Test_acc:83.9%, Test_loss:0.453
Epoch:25, Train_acc:83.5%, Train_loss:0.431, Test_acc:80.6%, Test_loss:0.451
Epoch:26, Train_acc:84.2%, Train_loss:0.444, Test_acc:80.6%, Test_loss:0.449
Epoch:27, Train_acc:83.1%, Train_loss:0.427, Test_acc:80.6%, Test_loss:0.449
Epoch:28, Train_acc:84.2%, Train_loss:0.409, Test_acc:80.6%, Test_loss:0.449
Epoch:29, Train_acc:83.8%, Train_loss:0.405, Test_acc:80.6%, Test_loss:0.448
Epoch:30, Train_acc:83.8%, Train_loss:0.411, Test_acc:80.6%, Test_loss:0.448
Epoch:31, Train_acc:83.8%, Train_loss:0.378, Test_acc:80.6%, Test_loss:0.446
Epoch:32, Train_acc:84.6%, Train_loss:0.421, Test_acc:80.6%, Test_loss:0.444
Epoch:33, Train_acc:84.6%, Train_loss:0.391, Test_acc:80.6%, Test_loss:0.443
Epoch:34, Train_acc:85.7%, Train_loss:0.388, Test_acc:80.6%, Test_loss:0.446
Epoch:35, Train_acc:84.2%, Train_loss:0.396, Test_acc:80.6%, Test_loss:0.449
Epoch:36, Train_acc:84.2%, Train_loss:0.346, Test_acc:80.6%, Test_loss:0.451
Epoch:37, Train_acc:84.9%, Train_loss:0.379, Test_acc:80.6%, Test_loss:0.453
Epoch:38, Train_acc:84.9%, Train_loss:0.389, Test_acc:80.6%, Test_loss:0.453
Epoch:39, Train_acc:83.1%, Train_loss:0.386, Test_acc:80.6%, Test_loss:0.453
Epoch:40, Train_acc:84.9%, Train_loss:0.350, Test_acc:80.6%, Test_loss:0.452
Epoch:41, Train_acc:83.5%, Train_loss:0.353, Test_acc:80.6%, Test_loss:0.455
Epoch:42, Train_acc:85.7%, Train_loss:0.373, Test_acc:80.6%, Test_loss:0.458
Epoch:43, Train_acc:84.6%, Train_loss:0.345, Test_acc:80.6%, Test_loss:0.459
Epoch:44, Train_acc:85.3%, Train_loss:0.377, Test_acc:80.6%, Test_loss:0.461
Epoch:45, Train_acc:85.7%, Train_loss:0.354, Test_acc:80.6%, Test_loss:0.462
Epoch:46, Train_acc:84.9%, Train_loss:0.327, Test_acc:80.6%, Test_loss:0.467
Epoch:47, Train_acc:82.7%, Train_loss:0.347, Test_acc:80.6%, Test_loss:0.470
Epoch:48, Train_acc:84.6%, Train_loss:0.350, Test_acc:80.6%, Test_loss:0.470
Epoch:49, Train_acc:84.9%, Train_loss:0.344, Test_acc:80.6%, Test_loss:0.470
Epoch:50, Train_acc:85.3%, Train_loss:0.375, Test_acc:80.6%, Test_loss:0.472

5、结果展示

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epoch_length = range(epoches)

plt.figure(figsize=(12, 3))

plt.subplot(1, 2, 1)
plt.plot(epoch_length, train_acc, label='Train Accuaray')
plt.plot(epoch_length, test_acc, label='Test Accuaray')
plt.legend(loc='lower right')
plt.title('Accurary')

plt.subplot(1, 2, 2)
plt.plot(epoch_length, train_loss, label='Train Loss')
plt.plot(epoch_length, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Loss')

plt.show()


在这里插入图片描述

趋于平稳不是没有变化,是变化很小,整体模型效果还可以

6、模型评估

# 评估:返回的是自己在model.compile中设置,这里为accuracy
test_acc, test_loss = test(test_dl, model, loss_fn)
print("socre[loss, accuracy]: ", test_acc, test_loss) # 返回为两个,一个是loss,一个是accuracy
socre[loss, accuracy]:  0.8064516129032258 0.47150832414627075

标签:acc,loss,RNN,Epoch,---,test,pytorch,Train,Test
From: https://blog.csdn.net/weixin_74085818/article/details/145083629

相关文章

  • 数据结构C语言描述11(图文结合)--二叉搜索树(BST树)的实现(数据采用KV存储形式进行封
    前言这个专栏将会用纯C实现常用的数据结构和简单的算法;有C基础即可跟着学习,代码均可运行;准备考研的也可跟着写,个人感觉,如果时间充裕,手写一遍比看书、刷题管用很多,这也是本人采用纯C语言实现的原因之一;欢迎收藏+关注,本人将会持续更新。文章目录什么是二叉搜索树代码实......
  • ChatGPT-canvas进行学术写作是怎样的体验?全流程+提示词分享
    目录1.大纲框架✔2.正文✔        在这个信息爆炸的时代,如何高效地将思路转化为一篇条理清晰、内容丰富的文章?今天,让我们一起走进ChatGPT-Canvas的世界,探索它是如何巧妙地将大纲转化为正文内容的。ChatGPT-Canvas不仅仅是一个写作工具,它更像是一位聪明的写作伙伴,能......
  • 自己动手写CPU - 6
    自己动手写CPU_qq85058522的博客-CSDN博客CPU不加功能了,但汇编器可以有。下面写一个把汇编(助记符)翻译成机器码的小工具。Python熟些,就用它了。很简单,就是字符串替换。直接上代码。importsysiflen(sys.argv)!=2:print("usage:pythonassemblerxxx.asm")exi......
  • Java基础--变量和数据类型
    变量和数据类型:*基本类型的变量:1.整数类型:byte、short、int、longJava只定义了带符号的整型,因此,最高位的bit表示符号位(0表示正数,1表示负数)。各种整型能表示的最大范围如下:byte:-128~127short:-32768~32767int:-2147483648~2147483647long:-9223372036854......
  • 前端加密对抗-2
    分析加密过程    点击登录可以发现有两个请求。查看载荷可以分析出第一个是获得密钥加密的,并且每次过去到的密钥是不会变化的,第二个则是加密过后的数据。这次的类型是从服务端获得密钥,一样使用autodecoder来加解密。    设置autodecoder的参数,这里的正则如果不会......
  • MCMC-Gibbs抽样(R语言实现)
    在贝叶斯统计中,不同于频率学派将参数视作为未知常数,贝叶斯学派将参数视作为随机变量。若参数θ\thetaθ的先验分布为P......
  • 【云安全】AccessKey泄露-安全问题分析
    AccessKey泄露是所有依赖API访问的云服务都会面临的潜在安全风险。AccessKey是云服务中常用的身份认证凭证,如果泄露,攻击者可能会冒充合法用户进行操作,带来严重的安全隐患。什么是AccessKey?通常包括以下两个部分:AccessKeyID(AKID):用于标识用户身份。AccessKeySecret(AKS......
  • 后端技术选型 sa-token校验学习 下 结合项目学习 前后端登录
    目录后端设置Controller层Service层后端返回Token给前端1.用户提交登录请求2.后端验证用户身份3.返回Token4.前端保存Token前端存储1.前端向后端发起请求2.前端存储一下Token3.管理用户认证的token的工具4.在Service层进行设置HTTP请求工具......
  • 后端技术选型 sa-token校验学习 下 结合项目学习 后端鉴权
    目录后端注册拦截器实现对WebMvcConfigurer接口的类实现静态变量方法重写注册SpringFramework拦截器Sa-Token中SaServletFilter拦截器思考为什么使用两个拦截器1.SpringFramework拦截器2.SaServletFilter为什么要注册两个拦截器?总结完整代码后端注册权......
  • Java面试题汇总-Java基础篇(共50道题)
    Java基础目录Java基础一、java中的序列化和反序列化是什么?二、什么是java的不可变类?三、Java中Exception和Error有什么区别?四、你觉得java的优势是什么?五、什么是java的多态特性?六、java中的参数传递是按值还是按引用?七、为什么java不支持多重继承?八、面向对象......