正向索引
我们先来回顾一下正向索引。
例如有一张名为tb_goods的表:
id | title | price |
---|---|---|
1 | 小米手机 | 3499 |
2 | 华为手机 | 4999 |
3 | 华为小米充电器 | 49 |
4 | 小米手环 | 49 |
… | … | … |
其中的id字段已经创建了索引,由于索引底层采用了B+树结构,因此我们根据id搜索的速度会非常快。但是其他字段例如title,只在叶子节点上存在。
因此要根据title搜索的时候只能遍历树中的每一个叶子节点,判断title数据是否符合要求。
比如用户的SQL语句为:
select * from tb_goods where title like '%手机%';
那搜索的大概流程如图:
综上,根据id精确匹配时,可以走索引,查询效率较高。而当搜索条件为模糊匹配时,由于索引无法生效,导致从索引查询退化为全表扫描,效率很差。
因此,正向索引适合于根据索引字段的精确搜索,不适合基于部分词条的模糊匹配。
而倒排索引恰好解决的就是根据部分词条模糊匹配的问题。
倒排索引
倒排索引中有两个非常重要的概念:
文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
创建倒排索引是对正向索引的一种特殊处理和应用,流程如下:
将每一个文档的数据利用分词算法根据语义拆分,得到一个个词条
创建表,每行数据包括词条、词条所在文档id、位置等信息
因为词条唯一性,可以给词条创建正向索引
此时形成的这张以词条为索引的表,就是倒排索引表,两者对比如下:
正向索引
倒排索引
词条(索引) | 文档id |
---|---|
小米 | 1,3,4 |
手机 | 1,2 |
华为 | 2,3 |
充电器 | 3 |
手环 | 4 |
倒排索引的搜索流程如下(以搜索"华为手机"为例),如图: