首页 > 其他分享 >当前SAT主要关键技术及其相关文献2022-11-1

当前SAT主要关键技术及其相关文献2022-11-1

时间:2022-11-01 10:35:26浏览次数:83  
标签:11 pp Google Scholar Proceedings 2020 2022 SAT

摘录自:

  
 

当前SAT主要关键技术及其相关文献——参见下面这段叙述。

The annual SAT competitions have become an essential event for the distribution of SAT benchmarks and the development of new SAT-solving methods [5]. Sequential SAT solvers compete mainly in three categories: industrial, crafted, and random tracks. The SAT competitions have demonstrated how difficult it is for SAT solvers to perform well across all categories. Results show that conflict-driven clause-learning (CDCL) SAT solvers were most performant for solving industrial and crafted SAT benchmarks, whereas look-ahead and Stochastic Local Search (SLS)-based SAT solvers have dominated the random category [5]. Modern implementations of CDCL SAT solvers employ a lot of heuristics. Some of them can be considered baseline, such as the Variable State Independent Decaying Sum (VSIDS) [6], restarts [7], and Literal Block Distance (LBD) [8]. Several others were incorporated recently, including: Learnt Clause Minimization (LCM) [9], Distance (Dist) heuristic [10], Chronological Backtracking (ChronoBT) [11], duplicate learnts heuristic [12], Conflict History-Based (CHB) heuristic [13], Learning Rate-based Branching (LRB) heuristic [14], and the SLS component [15].

 

 

 

 

[5] SAT Competitions. 2002. Available online: http://www.satcompetition.org (accessed on 19 November 2019).

[6] Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), Las Vegas, NV, USA, 22 June 2001; pp. 530–535. [Google Scholar] [CrossRef]

[7] Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 1993, 47, 173–180. [Google Scholar] [CrossRef]

[8] Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the 21st International Jont Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009; IJCAI’09. pp. 399–404. [Google Scholar]

[9] Luo, M.; Li, C.M.; Xiao, F.; Manyà, F.; Lü, Z. An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia 19–25 August 2017; pp. 703–711. [Google Scholar] [CrossRef]

[10] Xiao, F.; Luo, M.; Li, C.M.; Manyà, F.; Lü, Z. MapleLRB LCM, Maple LCM, Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT Competition 2017. In Proceedings of the SAT Competition 2017: Solver and Benchmark Descriptions, Melbourne, Australia, 28 August–1 September 2017; Volume B-2017-1, pp. 25–26. [Google Scholar]

[11] Nadel, A.; Ryvchin, V. Chronological Backtracking. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2018, Oxford, UK, 9–12 July 2018; Beyersdorff, O., Wintersteiger, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–121. [Google Scholar]

[12] Kochemazov, S.; Zaikin, O.; Semenov, A.A.; Kondratiev, V. Speeding Up CDCL Inference with Duplicate Learnt Clauses. In Proceedings of the ECAI 2020—24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29 August–8 September 2020; Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J., Eds.; IOS Press: Shepherdsville, KY, USA, 2020; Volume 325, pp. 339–346. [Google Scholar] [CrossRef]

[13] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI’16. pp. 3434–3440. [Google Scholar]

[14] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2016—19th International Conference, Bordeaux, France, 5–8 July 2016; Creignou, N., Berre, D.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9710, pp. 123–140. [Google Scholar] [CrossRef]

[15] Zhang, X.; Cai, S. Relaxed Backtracking with Rephasing. In Proceedings of the SAT Competition 2020, Alghero, Italy, 3–10 July 2020; Solver and Benchmark Descriptions. University of Helsinki, Department of Computer Science: Helsinki, Finland, 2020; Volume B-2020-1, pp. 15–16. [Google Scholar]

 

   

标签:11,pp,Google,Scholar,Proceedings,2020,2022,SAT
From: https://www.cnblogs.com/yuweng1689/p/16846843.html

相关文章

  • 【111】
    1662. 检查两个字符串数组是否相等 给你两个字符串数组 word1 和 word2 。如果两个数组表示的字符串相同,返回 true ;否则,返回 false 。数组表示......
  • 11月开展消防宣传答题活动
    11月开展消防宣传答题活动活动背景今年11月9日是第31个全国消防日,活动的主题是“抓消防安全,保高质量发展”。消防宣传活动中,各地区、各有关部门和单位要深刻领会关于......
  • CSP-S 2022 又寄
    太蠢了,寄掉了初赛竟然是线上举办……AWTY(\(47\))和Lucas(\(49\))寄掉了,只能给€€£打钱了。upd.打了钱还是进不去,只能加\(5\)分……DAY-inf复习了一......
  • KeyShot Pro 10.2 for Mac永久版(3D模型渲染软件)v10.2.113 中文版mac/win
    KeyShotPro10.1是一款功能强大的3D模型渲染软件,帮助你更好的创建3D渲染动画。其中KeyShot的GPU模式可用于实时渲染和本地渲染输出,一键访问GPU资源,从而利用多GPU性能扩展......
  • CSP-S 2022 T4 题解
    简述题意给一颗\(n\)个点的树,每个点有点权\(v_i\)。有\(q\)次询问,每次给出\((u,v)\),从\(u\)开始,每步只能走不超过\(k\)条边,走一步的代价是终点的点权,\(v_u\)也......
  • win11的go安装
    背靠国外各大金主的go语言,在各种推动下,可谓是新的弄潮儿,但国内虽然各种推销,但从安装到开发再到维护,资料都少之又少,可能被垄断了解释权吧。因此下面的也只是一个记录而已,......
  • 2022祥云杯 - HashRun安全团队wp
    2022祥云杯-HashRun安全团队wpHaveFun@T4x0r注册一个\(admin\)账号发现页面会提示已经注册,其实本来想的是注入,但是发现注册功能活的,感觉二次注入可能也不是很大,注册......
  • 【五期杨志】CCF-A(NeurIPS'20) Self-supervised multimodal versatile networks
    AlayracJB,RecasensA,SchneiderR,etal.Self-supervisedmultimodalversatilenetworks[J].AdvancesinNeuralInformationProcessingSystems,2020,33:2......
  • 力扣 113. 路径总和 II [dfs,bfs]
    113.路径总和II给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。叶子节点是指没有子节......
  • CSP2022 J&S 游记
    终于是“游记”而不是“游寄”了!前言因为没有AK过CSP-J,也没有AK过任何任何CCF的比赛。为了弥补这一遗憾,我报名了今年的CSP-J。但是现在看来,这一举动好像有点多......