死锁问题案例分析解决
死锁的问题经常会考察到,面对哪些情况下会程序会发生死锁的问题,与其想着怎么把书上的理论背出来,不如从实践的角度举例说明,如何对死锁的问题进行分析定位,然后找到问题点进行修改。
当我们的程序运行时,出现假死的现象,有可能是程序死循环了,有可能是程序等待的I/O、网络事件没发生导致程序阻塞了,也有可能是程序死锁了,下面举例说明在Linux系统下如何分许我们程序的死锁问题。
示例:
当一个程序的多个线程获取多个互斥锁资源的时候,就有可能发生死锁问题,比如线程A先获取了锁1,线程B获取了锁2,进而线程A还需要获取锁2才能继续执行,但是由于锁2被线程B持有还没有释放,线程A为了等待锁2资源就阻塞了;线程B这时候需要获取锁1才能往下执行,但是由于锁1被线程A持有,导致A也进入阻塞。
线程A和线程B都在等待对方释放锁资源,但是它们又不肯释放原来的锁资源,导致线程A和B一直互相等待,进程死锁了。下面代码示例演示这个问题:
#include <iostream> //std::cout
#include <thread> //std::thread
#include <mutex> //std::mutex, std::unique_lock
#include <condition_variable> //std::condition_variable
#include <vector>
//锁资源1
std::mutex mtx1;
//锁资源2
std::mutex mtx2;
//线程A的函数
void taskA()
{
//保证线程A先获取锁1
std::lock_guard<std::mutex> lockA(mtx1);
std::cout << "线程A获取锁1" << std::endl;
//线程A睡眠2s再获取锁2,保证锁2先被线程B获取,模拟死锁问题的发生
std::this_thread::sleep_for(std::chrono::seconds(2));
//线程A先获取锁2
std::lock_guard<std::mutex> lockB(mtx2);
std::cout << "线程A获取锁2" << std::endl;
std::cout << "线程A释放所有锁资源,结束运行!" << std::endl;
}
//线程B的函数
void taskB()
{
//线程B先睡眠1s保证线程A先获取锁1
std::this_thread::sleep_for(std::chrono::seconds(1));
std::lock_guard<std::mutex> lockB(mtx2);
std::cout << "线程B获取锁2" << std::endl;
//线程B尝试获取锁1
std::lock_guard<std::mutex> lockA(mtx1);
std::cout << "线程B获取锁1" << std::endl;
std::cout << "线程B释放所有锁资源,结束运行!" << std::endl;
}
int main()
{
//创建生产者和消费者线程
std::thread t1(taskA);
std::thread t2(taskB);
//main主线程等待所有子线程执行完
t1.join();
t2.join();
return 0;
}
可以看到,线程A获取锁1、线程B获取锁2以后,进程就不往下继续执行了,一直等待在这里,如果这是我们碰到的一个问题场景,我们如何判断出这是由于线程间死锁引起的呢?
先通过ps命令查看一下进程当前的运行状态和PID
root@lin-virtual-machine:/home/liu# ps -aux | grep a.out
liu 1953 0.0 0.0 98108 1904 pts/0 Sl+ 10:41 0:00 ./a.out
root 2064 0.0 0.0 21536 1076 pts/1 S+ 10:51 0:00 grep --color=auto a.out
从上面的命令可以看出,a.out进程的PID是1953,当前状态是Sl+,相当于是多线程程序,全部进入阻塞状态。
通过top命令再查看一下进程内每个线程具体的运行情况
root@lin-virtual-machine:/home/liu# top -Hp 1953
进程 USER PR NI VIRT RES SHR CPU %MEM TIME+ COMMAND
1953 liu 20 0 98108 1904 1752 S 0.0 0.1 0:00.00 a.out
1954 liu 20 0 98108 1904 1752 S 0.0 0.1 0:00.00 a.out
1955 liu 20 0 98108 1904 1752 S 0.0 0.1 0:00.00 a.out
从top命令的打印信息可以看出,所有线程都进入阻塞状态,CPU占用率都为0.0,可以排除是死循环的问题,因为死循环会造成CPU使用率居高不下,而且线程的状态也不会是S。那么接下来有可能是由于I/O网络事件没有发生使线程阻塞,或者是线程发生死锁问题了。
通过gdb远程调试正在运行的程序,打印进程每一个线程的调用堆栈信息,过程如下:
通过gdb attach pid远程调试上面的a.out进程,命令如下:
root@liu-virtual-machine:/home/liu# gdb attach 1953
进入gdb调试命令行以后,打印所有线程的调用栈信息,信息如下:
(gdb) thread apply all bt
Thread 3 (Thread 0x7feb523ec700 (LWP 1955)):
#0 _llllock_wait () at …/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:135
#1 0x00007feb53928023 in __GI___pthread_mutex_lock (mutex=0x5646aabe7140 ) at …/nptl/pthread_mutex_lock.c:78
#2 0x00005646aa9e40bf in __gthread_mutex_lock(pthread_mutex_t*) ()
#3 0x00005646aa9e4630 in std::mutex::lock() ()
#4 0x00005646aa9e46ac in std::lock_guardstd::mutex::lock_guard(std::mutex&) ()
#5 0x00005646aa9e42c0 in taskB() ()
#6 0x00005646aa9e4bdb in void std::__invoke_impl)()>(std::__invoke_other, void (&&)()) ()
#7 0x00005646aa9e49e8 in std::__invoke_result)()>::type std::__invoke<void ()()>(void (&&)()) ()
#8 0x00005646aa9e50b6 in decltype (__invoke((_S_declval<0ul>)())) std::thread::_Invoker<std::tuple<void ()()> >::_M_invoke<0ul>(std::_Index_tuple<0ul>) ()
#9 0x00005646aa9e5072 in std::thread::_Invoker)()> >::operator()() ()
#10 0x00005646aa9e5042 in std::thread::_State_impl<std::thread::_Invoker<std::tuple<void ()()> > >::_M_run() ()
#11 0x00007feb5365257f in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6
#12 0x00007feb539256db in start_thread (arg=0x7feb523ec700) at pthread_create.c:463
#13 0x00007feb530ad88f in clone () at …/sysdeps/unix/sysv/linux/x86_64/clone.S:95
Thread 2 (Thread 0x7feb52bed700 (LWP 1954)):
#0 _llllock_wait () at …/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:135
#1 0x00007feb53928023 in __GI___pthread_mutex_lock (mutex=0x5646aabe7180 ) at …/nptl/pthread_mutex_lock.c:78
#2 0x00005646aa9e40bf in __gthread_mutex_lock(pthread_mutex_t*) ()
#3 0x00005646aa9e4630 in std::mutex::lock() ()
#4 0x00005646aa9e46ac in std::lock_guardstd::mutex::lock_guard(std::mutex&) ()
#5 0x00005646aa9e4183 in taskA() ()
#6 0x00005646aa9e4bdb in void std::__invoke_impl)()>(std::__invoke_other, void (&&)()) ()
#7 0x00005646aa9e49e8 in std::__invoke_result)()>::type std::__invoke<void ()()>(void (&&)()) ()
#8 0x00005646aa9e50b6 in decltype (__invoke((_S_declval<0ul>)())) std::thread::_Invoker<std::tuple<void ()()> >::_M_invoke<0ul>(std::_Index_tuple<0ul>) ()
#9 0x00005646aa9e5072 in std::thread::_Invoker)()> >::operator()() ()
#10 0x00005646aa9e5042 in std::thread::_State_impl<std::thread::_Invoker<std::tuple<void ()()> > >::_M_run() ()
#11 0x00007feb5365257f in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6
#12 0x00007feb539256db in start_thread (arg=0x7feb52bed700) at pthread_create.c:463
#13 0x00007feb530ad88f in clone () at …/sysdeps/unix/sysv/linux/x86_64/clone.S:95
Thread 1 (Thread 0x7feb53d4b740 (LWP 1953)):
—Type to continue, or q to quit—
#0 0x00007feb53926d2d in __GI___pthread_timedjoin_ex (threadid=140648682280704, thread_return=0x0, abstime=0x0,
block=) at pthread_join_common.c:89
#1 0x00007feb536527d3 in std::thread::join() () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6
#2 0x00005646aa9e43bb in main ()
(gdb)
从上面的线程调用栈信息可以看到,当前进程有三个线程,分别是Thread1是main线程,Thread2是taskA线程,Thread3是taskB线程。
从调用栈信息可以看到,Thread3线程进入S阻塞状态的原因是因为它最后在#0 _llllock_wait () at,也就是它在等待获取一把锁(lock_wait),而且堆栈信息打印的很清晰,#1 0x00007feb53928023 in __GI___pthread_mutex_lock (mutex=0x5646aabe7140 ) at …/nptl/pthread_mutex_lock.c:78,Thread3在获取而获取不到,因此进入阻塞状态了。这里结合代码分析,Thread3线程(也就是taskB)最后在这里阻塞了:
void taskB()
{undefined
//线程B先睡眠1s保证线程A先获取锁1
std::this_thread::sleep_for(std::chrono::seconds(1));
std::lock_guardstd::mutex lockB(mtx2);
std::cout << "线程B获取锁2"<< std::endl;
//线程B尝试获取锁1
std::lock_guardstd::mutex lockA(mtx1); //===》 这里阻塞了!如果不知道怎么定位到源代码行上,看下一小节!
std::cout << "线程B获取锁1" << std::endl;
std::cout << "线程B释放所有锁资源,结束运行!" << std::endl;
}
依然是从调用栈信息可以看到,Thread2线程进入S阻塞状态的原因是因为它最后在#0 _llllock_wait () at,也就是它在等待获取一把锁(lock_wait),而且堆栈信息打印的很清晰,#1 0x00007feb53928023 in __GI___pthread_mutex_lock (mutex=0x5646aabe7180 ) at …/nptl/pthread_mutex_lock.c:78,Thread2在获取而获取不到,因此进入阻塞状态了。这里结合代码分析,Thread2线程(也就是taskA)最后在这里阻塞了:
void taskA()
{undefined
// 保证线程A先获取锁1
std::lock_guardstd::mutex lockA(mtx1);
std::cout << "线程A获取锁1"<< std::endl;
// 线程A睡眠2s再获取锁2,保证锁2先被线程B获取,模拟死锁问题的发生
std::this_thread::sleep_for(std::chrono::seconds(2));
// 线程A先获取锁2
std::lock_guardstd::mutex lockB(mtx2); ===》 这里阻塞了!如果不知道怎么定位到源代码行上,看下一小节!
std::cout << "线程A获取锁2" << std::endl;
std::cout << "线程A释放所有锁资源,结束运行!" << std::endl;
}
既然定位到taskA和taskB线程阻塞的原因,都是因为锁获取不到,然后再结合源码进行分析定位,最终发现taskA之所以获取不到mtx2,是因为mtx2早被taskB线程获取了;同样taskB之所以获取不到mtx1,是因为mtx1早被taskA线程获取了,导致所有线程进入阻塞状态,等待锁资源的获取,但是又因为没有线程释放锁,最终导致死锁问题。(从各线程调用栈信息能看出来,这里面和I/O网络事件没什么关系).
怎么在源码上定位到问题代码
实际上,上面的代码运行一般是发布后的release版本,内部没有调试信息,我们如果想把死锁的原因定位到源码的某一行代码上,就需要一个debug版本(g++编译添加-g选项),操作如下:
1.编译命令
liu@liu-virtual-machine:~/code$ g++ 20190316.cpp -g -lpthread
2. 运行代码
liu@liu-virtual-machine:~/code$ ./a.out
线程A获取锁1
线程B获取锁2
…(程序到这里不往下运行了)
3.gdb调试该进程
root@liu-virtual-machine:/home/liu/code# ps -ef | grep a.out
liu 2617 1535 0 12:32 pts/0 00:00:00 ./a.out
root@tony-virtual-machine:/home/liu/code# gdb attach 2617
4.查看当前所有的线程
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7f8c63002740 (LWP 2617) "a.out" 0x00007f8c62bddd2d in __GI___pthread_timedjoin_ex (
threadid=140240914892544, thread_return=0x0, abstime=0x0, block=<optimized out>) at pthread_join_common.c:89
2 Thread 0x7f8c61ea4700 (LWP 2618) "a.out" __lll_lock_wait () at ../sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:135
3 Thread 0x7f8c616a3700 (LWP 2619) "a.out" __lll_lock_wait () at ../sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:135
可以看到有三个线程。
5.切换到线程2
(gdb) thread 2
6.查看线程2目前的调用栈信息,where或者bt命令都可以
(gdb) where
(gdb) where
#0 __lll_lock_wait () at ../sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:135
#1 0x00007f8c62bdf023 in __GI___pthread_mutex_lock (mutex=0x55678928e180 <mtx2>) at ../nptl/pthread_mutex_lock.c:78
#2 0x000055678908b0bf in __gthread_mutex_lock (__mutex=0x55678928e180 <mtx2>)
at /usr/include/x86_64-linux-gnu/c++/7/bits/gthr-default.h:748
#3 0x000055678908b630 in std::mutex::lock (this=0x55678928e180 <mtx2>) at /usr/include/c++/7/bits/std_mutex.h:103
#4 0x000055678908b6ac in std::lock_guard<std::mutex>::lock_guard (this=0x7f8c61ea3dc0, __m=...)
at /usr/include/c++/7/bits/std_mutex.h:162
#5 0x000055678908b183 in taskA () at 20190316.cpp:23
#6 0x000055678908bbdb in std::__invoke_impl<void, void (*)()> (__f=@0x556789d78e78: 0x55678908b0f7 <taskA()>)
at /usr/include/c++/7/bits/invoke.h:60
#7 0x000055678908b9e8 in std::__invoke<void (*)()> (__fn=@0x556789d78e78: 0x55678908b0f7 <taskA()>)
at /usr/include/c++/7/bits/invoke.h:95
#8 0x000055678908c0b6 in std::thread::_Invoker<std::tuple<void (*)()> >::_M_invoke<0ul> (this=0x556789d78e78)
at /usr/include/c++/7/thread:234
#9 0x000055678908c072 in std::thread::_Invoker<std::tuple<void (*)()> >::operator() (this=0x556789d78e78)
at /usr/include/c++/7/thread:243
#10 0x000055678908c042 in std::thread::_State_impl<std::thread::_Invoker<std::tuple<void (*)()> > >::_M_run (
this=0x556789d78e70) at /usr/include/c++/7/thread:186
#11 0x00007f8c6290957f in ?? () from /usr/lib/x86_64-linux-gnu/libstdc++.so.6
#12 0x00007f8c62bdc6db in start_thread (arg=0x7f8c61ea4700) at pthread_create.c:463
#13 0x00007f8c6236488f in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:95
7.查看上面线程2的第5帧信息#5 0x000055678908b183 in taskA () at 20190316.cpp:23
(gdb) f 5
#5 0x000055678908b183 in taskA () at 20190316.cpp:23
23 std::lock_guard< std::mutex > lockB(mtx2);
可以看到,这里就直接定位到代码一直阻塞在了20190316.cpp的第23行,对应的行代码是std::lock_guard< std::mutex > lockB(mtx2);
死锁问题代码修改
既然发现了问题,那么就知道这个问题场景发生死锁,是由于多个线程获取多个锁资源的时候,顺序不一致导致的死锁问题,那么保证它们获取锁的顺序是一致的,问题就可以解决,代码修改如下:
#include <iostream> //std::cout
#include <thread> //std::thread
#include <mutex> //std::mutex, std::unique_lock
#include <condition_variable> //std::condition_variable
#include <vector>
//锁资源1
std::mutex mtx1;
//锁资源2
std::mutex mtx2;
// 线程A的函数
void taskA()
{
//保证线程A先获取锁1
std::lock_guard<std::mutex> lockA(mtx1);
std::cout << "线程A获取锁1" << std::endl;
//线程A尝试获取锁2
std::lock_guard<std::mutex> lockB(mtx2);
std::cout << "线程A获取锁2" << std::endl;
std::cout << "线程A释放所有锁资源,结束运行!" << std::endl;
}
// 线程B的函数
void taskB()
{
//线程B获取锁1
std::lock_guard<std::mutex> lockA(mtx1);
std::cout << "线程B获取锁1" << std::endl;
//线程B尝试获取锁2
std::lock_guard<std::mutex> lockB(mtx2);
std::cout << "线程B获取锁2" << std::endl;
std::cout << "线程B释放所有锁资源,结束运行!" << std::endl;
}
int main()
{
//创建生产者和消费者线程
std::thread t1(taskA);
std::thread t2(taskB);
//main主线程等待所有子线程执行完
t1.join();
t2.join();
return 0;
}
标签:std,__,thread,lock,案例,死锁,mutex,解决,线程
From: https://blog.csdn.net/2301_78353179/article/details/144855077