from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split, cross_validate from sklearn.linear_model import LogisticRegression from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_score, classification_report # (1) 从 scikit-learn 库中加载 iris 数据集,使用留出法留出 1/3 的样本作为测试集(注意同分布取样) # 加载数据集 iris = load_iris() X, y = iris.data, iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=42, stratify=y) # (2) 使用训练集训练对数几率回归(逻辑回归)分类算法 # 创建逻辑回归模型实例 model = LogisticRegression(solver='lbfgs', max_iter=200) # 训练模型 model.fit(X_train, y_train) # (3) 使用五折交叉验证对模型性能(准确度、精度、召回率和 F1 值)进行评估和选择 # 定义多个评分器 scoring = { 'accuracy': make_scorer(accuracy_score), 'precision': make_scorer(precision_score, average='weighted'), 'recall': make_scorer(recall_score, average='weighted'), 'f1': make_scorer(f1_score, average='weighted') } # 使用交叉验证评估模型 scores = cross_validate(model, X_train, y_train, cv=5, scoring=scoring) # 输出各项指标的平均值 print("五折交叉验证结果:") for key in scores: if key.startswith('test_'): print(f"{key[5:]}: {scores[key].mean():.4f}") # 去掉前缀 'test_' 来显示指标名称 # (4) 使用测试集,测试模型的性能,对测试结果进行分析,完成实验报告中实验二的部分 # 预测测试集标签 y_pred = model.predict(X_test) # 打印分类报告 report = classification_report(y_test, y_pred, target_names=iris.target_names, output_dict=True) print("\n测试集上的分类报告:") for label, metrics in report.items(): if isinstance(metrics, dict): print(f"类别 {label}:") for metric, value in metrics.items(): print(f" {metric}: {value:.4f}") else: print(f"{label}: {value:.4f}") # 打印混淆矩阵 from sklearn.metrics import confusion_matrix conf_matrix = confusion_matrix(y_test, y_pred) print("\n混淆矩阵:") print(conf_matrix)
标签:iris,机器,train,学习,print,score,实验,test,model From: https://www.cnblogs.com/youxiandechilun/p/18643697